-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueLearning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
The Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Point-of-Care Sensors to Detect Manganese from Single Drop of Blood
September 19, 2018 | UICEstimated reading time: 3 minutes

A three-year, $1.8 million grant from the National Institutes of Health will enable researchers at the University of Illinois at Chicago to develop portable, easy-to-use sensors that can detect toxic metals in a single drop of blood. The sensors would allow for faster and cheaper research, as well as rapid detection of metals including manganese and lead, both of which are powerful neurotoxins that can affect cognitive development and neuromotor function.
“Being able to quickly detect metals like lead and manganese would mean that remediation efforts to remove the metals from the environment can begin faster and treatment of the individual can also start faster,” said Ian Papautsky, the Richard and Loan Hill Professor of Bioengineering in the UIC College of Engineering and a principal investigator on the grant. “The sensors could also be used to test for these metals in water.”
Currently, small point-of-care sensors exist to detect lead in blood and water, but no such sensor exists to detect manganese. Manganese is an essential element needed by the body for basic cellular functions, but at higher levels, it is a potent neurotoxin that can accumulate in the brain and cause impairment. Current methods to detect this metal are expensive and time-consuming, involving either processing toenail clippings or hair, or taking blood draws in excess of 5 milliliters. Lead is another powerful neurotoxin that can cause lifelong deficits in IQ and academic achievement. Both metals are often discharged to the environment by industrial activities or manufacturing plants, while manganese is also a naturally occurring trace metal commonly found in the environment.
“Because these metals are most harmful to developing children, another issue, especially if you want to monitor exposure over time, is taking these relatively large —for a kid — amounts of blood over and over again to track manganese levels,” said Papautsky. “Getting a single drop of blood from a child is a lot easier.”
For researchers studying manganese in populations, they may only collect a few samples a day and wait until they have enough material to send to the lab for processing.
“This means research is often slow, with results coming in months after samples are collected. Our sensors could help speed research so that scientists can get answers faster,” Papautsky said.
Papautsky and his colleagues will work to develop and integrate several parts needed for the sensors: the chip on which a drop of blood or water is placed, the equipment that sends current through the chip to separate out the metal, the software to process the results, and the user interface that displays the results.
“We want the sensor to be easy for anyone to use, and the results easy to interpret,” Papautsky said.
Next, the team will validate their sensor by comparing results of blood tests from 150 children recruited from Chicago neighborhoods known to be affected by environmental manganese with results obtained from matching blood samples sent to a traditional lab for processing.
They will also investigate whether free manganese — manganese ions that aren’t bound to proteins — can provide useful information on total blood levels of manganese.
“Free manganese is much easier to measure than total manganese levels with our sensors, so if free manganese readings turn out to be accurate indicators of the total levels, we will further optimize the sensors to focus on free manganese,” Papautsky said.
Ultimately, Papautsky thinks his sensors will cost around $10 each, not including the hardware and software, which need to be purchased just once.
Other investigators on the grant are Erin Haynes, professor of environmental health, and William Heineman, Distinguished Research Professor, department of chemistry at the University of Cincinnati.
Suggested Items
DuPont’s Ellen Mager Recognized as 2025 Women MAKE Award Honoree
03/10/2025 | DuPontDuPont proudly announced that Ellen Mager, Site Leader at the DuPont New England Manufacturing & Technology Center (NEMTC) in Marlborough, Mass., has been honored as a recipient of the Manufacturing Institute’s Women MAKE Award.
Summit Interconnect Announces Key Executive Appointments: Sean Patterson Named CTO, Michael Norman Joins as President and COO
03/06/2025 | Summit Interconnect, Inc.Summit Interconnect, a leading provider of advanced PCB manufacturing solutions, is pleased to announce two key leadership updates to its executive team.
BEST Inc. BGA Reballing Service Offers Unsurpassed Solutions for Commercial, Military and Aerospace Applications
03/05/2025 | BEST Inc.BEST Inc., a leader in electronic component services, is pleased to announce it has expanded its BGA reballing solutions. Our BGA reballing process has been perfected over 20 plus years of reballing BGAs for electronic manufacturers across the country.
IPC Strengthens Its Global Executive Leadership Team
03/04/2025 | IPCIn an effort to strengthen service to its more than 3,200 corporate global members, IPC announces the transition of two of its executive leadership staff into new IPC roles.
Black Diamond Orders Hentec Industries/RPS Automation Vector 300 with EMP Upgrade
03/03/2025 | Hentec Industries/RPS AutomationThe Vector 300 is the most compact model in the selective soldering Vector series lineup, making it ideal for facilities with limited space. Despite its size, the Vector 300 can process boards up to 300 x 300 mm (11.8 x 11.8 in.).