April 17, 2025
High density interconnect (HDI) printed circuit boards have come a long way from their origins as a niche technology for miniaturized applications. Today, HDI PCBs are at the forefront of innovation, driven by an insatiable demand for faster, smaller, and more powerful electronic devices. As consumer electronics, 5G infrastructure, and AI-driven systems advance, design engineers must stay ahead of the curve to ensure their PCB designs meet evolving industry demands.
March 27, 2025
As a field application engineer for a major Chinese PCB company, I see firsthand the challenges and, more excitingly, the trends shaping our industry. Talking to engineers, designers, and procurement teams worldwide, one thing is clear: PCBs have come a long way, but we’re barely scratching the surface of what’s possible. Here are 10 trends I believe will define our industry over the next decade.
February 25, 2025
Technology can help us all become equal by leveling the playing field. It doesn’t matter where you build PCBs because the rules of physics are universal. There are several ways global standardization helps when it comes to working together to create the best possible products.
January 16, 2025
High-density interconnect (HDI) printed circuit boards (PCBs) transform modern electronics by providing increased functionality, reduced sizes, and enhanced performance in complex designs. They do so by using advanced techniques, such as finer line and space definitions, microvias, and additional board layers. Specialized via structures—namely blind, buried, and stacked vias—offer complex routing while conserving space. This allows for the development of highly compact electronic devices. This article delves into HDI PCB technology, the function and benefits of blind, buried, and stacked vias, and their impact on PCB performance and design.
December 18, 2024
As a PCB field applications engineer, ensuring smooth communication between PCB designers and fabricators is one of my frequent challenges. A critical part of that dialogue is design for manufacturing (DFM). Many designers, even experienced ones, often misunderstand or overlook important DFM considerations. They may confuse design rules with manufacturing minimums, leading to technically feasible designs that are difficult or costly to produce. In this column, I will clarify some common DFM guidelines and help designers understand the difference between “design rules” and “minimums” while sharing best practices that will simplify the production process and ensure the highest quality PCB.
November 14, 2024
Flex printed circuit boards are an essential advancement in the electronics industry, enabling the development of flexible, lightweight, and durable electronic designs. As technology has evolved, long-flex PCBs have emerged as a key component in applications requiring extended or intricate routing paths. Because of their use in automotive, commercial, and medical devices, designers are becoming more comfortable designing PCBs with this technology. This column will explore their attributes and role in modern products. I will also offer some essential tips for designing with manufacturability in mind.
October 24, 2024
In my first column, I want to discuss the critical importance of communications between the PCB design and the PCB fabrication engineer. I’ll explore why clear communication is so important, highlight the differences between standard and CTQ items, and outline the key issues that must be agreed upon to achieve success in PCB manufacturing.