-
-
News
News Highlights
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueLearning to Speak ‘Fab’
Our expert contributors clear up many of the miscommunication problems between PCB designers and their fab and assembly stakeholders. As you will see, a little extra planning early in the design cycle can go a long way toward maintaining open lines of communication with the fab and assembly folks.
Training New Designers
Where will we find the next generation of PCB designers and design engineers? Once we locate them, how will we train and educate them? What will PCB designers of the future need to master to deal with tomorrow’s technology?
The Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Estimated reading time: 1 minute

Quiet Power: Checking Cable Performance with VNA
In my December 2013 column Comparing Cable Shields,we showed that poor cable shields can result in significant noise pickup from the air, which can easily mask a few mV of noise voltage that we need to measure on a good power distribution rail. We showed a quick comparison of cable shield quality with a signal source and an oscilloscope. In this column, we will look at the same cables in the frequency domain, using a pocket-size vector network analyzer (VNA).
Figure 1: The USB-connected miniVNA Pro pocket-size VNA.
Vector network analyzers are similar to time domain reflectometry (TDR) instruments that many digital engineers may be more familiar with: They both transmit a known signal into the device under test (DUT) and measure the response. TDR instruments use a step waveform with a given rise time; VNAs use a sine wave source sweeping the frequency within a user-defined range. VNAs have long been popular in microwave engineering and more recently in high-speed digital engineering. They measure what are called scattering (S) parameters, which are the complex ratios of transmitted and reflected waves.
In recent years, small, low-cost, portable VNAs have become available. Measured data in this column was collected with a miniVNA Pro, a pocket-sized VNA. It operates over the 0. –200 MHz frequency range. It is battery-powered and features USB and Bluetooth connectivity (Figure 1). We hooked up a two-port DUT to the DUT and DET SMA connectors. The instrument injects sine waves (swept from 0.1–200 MHz or in any user-defined sub-band of it) into the cable connected to the SMA labeled DUT, measures sine waves propagating back from the DUT SMA (reflection) and the DET SMA (transmission), and compares the measured received sine waves to the injected sine waves to characterize reflection (e.g., S11) and transmission (e.g., S21). With this instrument, we can measure the full S matrix of a two-port DUT, though to get the full matrix, we have to manually set up four independent measurements. The instrument comes with open, load and short SMA calibration standards, shown on the lower left in Figure 1. Read the full column here.Editor's Note: This column originally appeared in the March 2014 issue of The PCB Design Magazine.
More Columns from Quiet Power
Quiet Power: An Evolution in PCB Design CostsQuiet Power: The Effect on SI and PI Board Performance
Quiet Power: 3D Effects in Power Distribution Networks
Quiet Power: Noise Mitigation in Power Planes
Quiet Power: Uncompensated DC Drop in Power Distribution Networks
Quiet Power: Ask the Experts—PDN Filters
Quiet Power: Friends and Enemies in Power Distribution
Quiet Power: Be Aware of Default Values in Circuit Simulators