-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Estimated reading time: 9 minutes
Contact Columnist Form
Design of Experiments
The third experiment, in Figure 4, serves to find the highest hole quality in a multilayer board. The variables and levels were a full factorial design of four variables at three levels:1. Drill methods: (-) resharpened 4-8 times (0) resharpened
2. Drill diameter: (-) 0.008” (0) .014” (+) 0.020”
3. Infeed rate: (-) xx in. per min. (0) xx in. per min (+) xx in. per min
4. Construction: (-)Std. Foil-Lam (0) Thick-prepreg w/foil-Lam (+) Std. Core-Lam.
The results are the hole quality (rms roughness %) and max. innerlayer mushrooming in microns.
The best quality was 0 microns mushrooming and
The fourth experiment, shown in Figure 4, is to further find the highest hole quality and to look at drilling productivity. The variables and levels were a fractional factorial design of three variables at two levels:
1. Drill method: (-) new drills (+) resharpened 6 times
2. Stack height: (-) 1 high (+) 3 high
3. Panel venting dams: (-) no-flow dams (+) full venting dams
The results are the hole quality (rms roughness %) and max. innerlayer mushrooming in microns.
The best quality was < 4% rms hole-wall roughness using a plane of new drill bits for stacks of 1-high with any appropriate venting dams. Analysis shows that the old resharpened drills could be used with drill stacks 3-high and has a usable hole-wall roughness but it interacts with drill infeed rates.
Figure 4: Two more examples of DOE for hole quality in multilayer boards. Full factorial design on the left was conducted to optimize drilled hole quality. Fractional factorial DOE on the right further optimizes hole quality and production productivity.
Notice that this last experiment was a fractional factorial. The power of a scanning experiment using the fractional factorial methodology is that N number of variables can be reviewed with only N+2 experiments. This is useful to find main effects, but not interaction, while later experiments will provide examination of interactions and optimization.
Page 4 of 5
More Columns from Happy’s Tech Talk
Happy’s Tech Talk #34: Producibility and Other Pseudo-metricsHappy’s Tech Talk #33: Wet Process Management and Control
Happy’s Tech Talk #32: Three Simple Ways to Manage and Control Wet Processes
Happy’s Tech Talk #31: Novel Ultra HDI Architectures
Happy’s Tech Talk #30: The Analog Computer
Happy’s Tech Talk #29: Bend-to-Install Semi-flex FR-4
Happy’s Tech Talk #28: The Power Mesh Architecture for PCBs
Happy’s Tech Talk #27: Integrated Mesh Power System (IMPS) for PCBs