-
- News
- Books
Featured Books
- design007 Magazine
Latest Issues
Current IssueThe Designer of the Future
Our expert contributors peer into their crystal balls and offer their thoughts on the designers and design engineers of tomorrow, and what their jobs will look like.
Advanced Packaging and Stackup Design
This month, our expert contributors discuss the impact of advanced packaging on stackup design—from SI and DFM challenges through the variety of material tradeoffs that designers must contend with in HDI and UHDI.
Rules of Thumb
This month, we delve into rules of thumb—which ones work, which ones should be avoided. Rules of thumb are everywhere, but there may be hundreds of rules of thumb for PCB design. How do we separate the wheat from the chaff, so to speak?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - design007 Magazine
Fujitsu, QuTech Developing Technology for Freezing Electronics to Control Diamond Spin Qubits
February 26, 2024 | JCN NewswireEstimated reading time: 3 minutes
Fujitsu announced a collaboration with QuTech (1) for the development of the world's first cryogenic electronic circuits for controlling diamond-based quantum bits. Enabling convenient operation of both the qubits and the control electronics in a compact cryogenic refrigerator, the new technique addresses the ‘wiring bottleneck’ in cooling qubits while maintaining high quality performance, marking a significant milestone toward the realization of larger-scale quantum computers.
QuTech will present the results of the joint research project with Fujitsu at the "International Conference on Solid State Device Circuits ISSCC 2024 (IEEE International Solid-State Circuits Conference 2024)," one of the largest conferences on semiconductor technology to be held in San Francisco, U.S., from February 18, 2024 to Thursday, February 22.
Background
Qubits make use of extremely fragile quantum effects that are perturbed by various influences including smallest amount of heat. Heat leaking into quantum computers would immediately destroy the information that a qubit was holding, rendering any quantum computer unreliable and unusable. To assure accurate operation, qubits need to be cooled down to the coldest temperatures possible, close to absolute zero kelvin (-273°C).
Accurate operation of the electronic circuits controlling the qubit represents an ongoing challenge, and conventional methods to keep qubits cold enough require a small cryogenic refrigerator, where qubits are connected with wires to the electronics outside the fridge.However, wires between the cold qubits and the room-temperature electronics significantly impact reliability, manufacturing and the size of quantum computers.
To address this, Fujitsu in collaboration with researchers and engineers at QuTech—a collaboration between the TU Delft and TNO – developed a new technique leveraging QuTech’s expertise in cryogenic semiconductor integrated circuit (cryo-CMOS circuit) technology and diamond spin qubit, which is more robust to heat disturbance, to successfully drive a diamond spin qubit using a cryo-CMOS circuit installed in a cryogenic refrigerator. The new technology enables the installation of a cryo-CMOS circuit at the same temperature as a diamond spin qubit (4 Kelvin), which can simplify wiring and lead to the construction of high-performance, large-scale integrated quantum computers.
Newly developed technology to cool electronics
Fujitsu in collaboration with QuTech developed a new technology that cools the whole quantum computer instead of just the qubits. Leveraging cryo-CMOS circuit technology, Fujitsu together with QuTech designed a magnetic field application circuit and a microwave driving circuit necessary for driving a diamond spin qubit at 4 Kelvin. By driving this magnetic field application circuit and microwave driving circuit in the same cryogenic refrigerator as the qubit, Fujitsu and QuTech successfully generated a magnetic field and microwaves strong enough to drive the diamond spin qubit.
The new technology simplifies wiring, and may one day contribute to the realization of high-performance, large-scale integrated quantum computers.
Fabio Sebastiano, Lead Investigator, QuTech, explains: “In designing electrical systems, there is always a balance between performance and power: the increase of one means a decrease of the other. Our challenge is obtaining high performance, while also not limiting the power consumption.” Masoud Babaie, Principal Investigator, QuTech adds: “This is crucial as too much power could overheat the cryogenic refrigerator used to keep the system at a low temperature. We used specific cryogenic electronic controllers (cryo-CMOS controllers) to alleviate the interconnect bottleneck: now we need fewer wires to enter the cryogenic fridge, which greatly enhances the scalability of the whole quantum computer.”
Dr. Shintaro Sato, Fellow, SVP & Head of Quantum Laboratory at Fujitsu Research, Fujitsu Limited, explains: "Wiring between control circuits and qubits is a common problem in the process of scaling up quantum computers. Results of our joint research highlight the potential of cryo-CMOS technology for diamond spin qubits to overcome this bottleneck. We anticipate that the new technology will enable us to achieve the high scalability expected in quantum computers using diamond spin qubits."
Future Plans
Realizing cryogenic electronic circuits for controlling diamond-based quantum bits, the newly developed technology signifies a significant step toward the realization of large-scale quantum computers. Moving forward, Fujitsu and QuTech will further enhance the newly developed technology, including the expansion from 1-qubit operation to 2-qubit operations, implementation of the qubit read-out functionality, and the scaling up to a larger quantum processors.
Suggested Items
Fein-Lines: CES 2025—The Consumer Technology Association's Super Event
01/07/2025 | Dan Feinberg -- Column: Fein-LinesThe Consumer Electronics Show, better known simply as CES 2025, starts today, Jan. 7, and continues to Jan. 10 in Las Vegas with an expected attendance of 150,000 tech enthusiasts and innovators. This highly anticipated annual show is a preview of the amazing technology advancements and devices we can expect to see over the next few years.
Imec, Partners Unveil SWIR Sensor with Lead-free Quantum Dot Photodiodes
12/31/2024 | ImecAt the 2024 IEEE International Electron Devices Meeting (IEDM), imec, a world-leading research and innovation hub in nanoelectronics and digital technologies, and its partners in the Belgian project Q-COMIRSE, present a first of its kind prototype shortwave infrared image sensor with indium arsenide quantum dot photodiodes.
Quantum Leaps: Winners of Airbus and BMW Group’s Quantum Computing Challenge Unveiled
12/12/2024 | BUSINESS WIREAirbus and BMW Group have pushed quantum computing forward another step to leverage its significant potential for future mobility solutions. At Q2B, the companies have unveiled the winners of the Quantum Computing Challenge, an international initiative to identify and mature quantum solutions for the most promising mobility applications.
Infleqtion Secures $11 Million DoD APFIT Award to Accelerate Deployment of Quantum Timing for Defense Applications
12/04/2024 | BUSINESS WIREInfleqtion, the world’s leading quantum information company, today announced its receipt of $11 million in funding from the U.S. Department of Defense (DoD) as part of the latest tranche of awards under the Accelerate the Procurement and Fielding of Innovative Technologies (APFIT) program.
Aeluma Secures NASA Contract to Advance Quantum Dot Photonic Integrated Circuits for Aerospace and AI Applications
11/25/2024 | ACCESSWIREAeluma, Inc., a semiconductor company specializing in high-performance, scalable technologies for mobile, automotive, AI, defense and aerospace, communication and quantum computing, announced it has been awarded a contract by NASA to develop quantum dot photonic integrated circuits (PICs) on silicon.