-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Scientists Study the Insulator-Superconductor Transition of Copper-Oxide Compound in Fine Detail
April 11, 2016 | BNLEstimated reading time: 4 minutes
Using a highly controlled deposition technique, scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have synthesized ultrathin films containing multiple samples of a copper-oxide compound to study the compound's electronic behavior at near absolute zero, or minus 459 degrees Fahrenheit. This technique, as described in a paper published in this week's Online Early Edition of the Proceedings of the National Academy of Sciences, is helping scientists understand how electrons behave as this material transitions from being an insulator to a superconductor capable of carrying electric current with no resistance.
"We are trying to understand the mechanism of the insulator-superconductor transition in a family of compounds called the cuprates. These compounds become superconducting at relatively high temperatures—minus 200 degrees Fahrenheit—in comparison to most superconducting materials, which require temperatures within a few degrees of absolute zero," said Jie Wu, lead author on the paper and a physicist in Brookhaven Lab's Condensed Matter Physics and Materials Science Department. "Characterizing this mechanism may provide insight into how we can make the superconducting temperature even higher, possibly even reaching room temperature."
This capability would enable electricity to be transferred much more efficiently. "Imagine a power line that carries electricity without any energy loss. We could wire the whole planet, resulting in trillions of dollars in savings and reduced environmental impact," said Wu.
Insulator-superconductor transition
In their native state, cuprates are insulators; they do not readily conduct electricity. But cuprates can become superconducting when chemically "doped" with strontium atoms, which produce free-moving electrons that pair up in the crystalline copper-oxide layers where superconductivity is known to occur.
At a certain reduced doping level, however, superconductivity weakens and eventually disappears. As the cuprates' superconducting temperature is lowered to near absolute zero, resistance increases somewhat (a characteristic of insulators) yet conductivity remains quite high (a characteristic of metals). The nature of this strange "insulating" state has been a puzzle to scientists for years.
Solving the puzzle requires a method of fine-tuning the doping level to incrementally approach the quantum critical point—the "tipping" point at which a material is on the cusp of transitioning from one state of electronic order to another, similar to the phase change that happens when ice melts into liquid water. It also requires a highly sensitive way to measure the electronic changes corresponding with the different doping levels.
One film, many samples
To study the insulator-superconductor transition in fine detail, the scientists synthesized films of a compound containing lanthanum, strontium, copper, and oxygen. They used a combinatorial molecular beam epitaxy system at Brookhaven that places materials onto a substrate, atom by atom, in a layered manner and at tightly controlled deposition rates.
Through photolithography, a technique of transferring a geometric pattern onto a substrate, the scientists patterned single-crystal films into a linear "combinatorial" library containing 30 samples, each with a slightly different chemical doping level near the quantum critical point. To provide the electrical contact needed to measure the resistivity of the samples, they evaporated gold pads onto the films' surface.
"We programmed the system to vary the doping level continuously and very precisely at a set minute increment," said Ivan Bozovic, co-author on the paper and a senior physicist in Brookhaven's Condensed Matter Physics and Materials Science Department.
The scientists then measured the electrical resistivity of the samples with varying temperatures, magnetic fields, and doping levels near the quantum critical point. Two types of measurements were taken: one parallel to the electrical current (longitudinal resistivity) and one perpendicular (Hall resistivity).
"The Hall resistivity is much more sensitive because it measures the voltage at a particular cross section of the sample. Longitudinal resistivity averages the whole section," said Wu. "Our Brookhaven team is the first to use this more localized approach that can give us a direct measurement of the density of mobile electrons."
Page 1 of 2
Suggested Items
Unlocking Advanced Circuitry Through Liquid Metal Ink
10/31/2024 | I-Connect007 Editorial TeamPCB UHDI technologist John Johnson of American Standard Circuits discusses the evolving landscape of electronics manufacturing and the critical role of innovation, specifically liquid metal ink technology, as an alternate process to traditional metallization in PCB fabrication to achieve ever finer features and tighter tolerances. The discussion highlights the benefits of reliability, efficiency, and yields as a tradeoff to any increased cost to run the process. As this technology becomes better understood and accepted, even sought out by customers and designers, John says there is a move toward mainstream incorporation.
Fresh PCB Concepts: The Critical Nature of Copper Thickness on PCBs
10/31/2024 | Team NCAB -- Column: Fresh PCB ConceptsPCBs are the backbone of modern electronics and the copper layers within these boards serve as the primary pathways for electrical signals. When designing and manufacturing PCBs, copper thickness is one of the most critical factors and significantly affects the board’s performance and durability. The IPC-6012F specification, the industry standard for the performance and qualification of rigid PCBs, sets clear guidelines on copper thickness to ensure reliability in different environments and applications.
Book Excerpt: The Printed Circuit Designer’s Guide to... DFM Essentials, Ch. 1
10/25/2024 | I-Connect007The guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter details high-frequency materials, copper foil types, metal core PCBs, and the benefits of embedded capacitance and resistor materials in multilayer PCBs.
The Cost-Benefit Analysis of Direct Metallization
10/21/2024 | Carmichael Gugliotti, MacDermid AlphaCarmichael Gugliotti of MacDermid Alpha discusses the innovative realm of direct metallization technology, its numerous applications, and significant advantages over traditional processes. Carmichael offers an in-depth look at how direct metallization, through developments such as Blackhole and Shadow, is revolutionizing PCB manufacturing by enhancing efficiency, sustainability, and cost-effectiveness. From its origins in the 1980s to its application in cutting-edge, high-density interconnects and its pivotal role in sustainability, this discussion sheds light on how direct metallization shapes the future of PCB manufacturing across various industries, including automotive, consumer electronics, and beyond.
Connect the Dots: Designing for Reality—Pattern Plating
10/16/2024 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we painted the picture of the outer layer imaging process. Now we are ready for pattern plating, where fabrication can get tricky. The board is now ready to receive the copper traces, pads, and other elements specified in the original CAD design. This article will lay out the pattern plating process and discuss constraints in the chemistries that must be properly managed to meet the customer's exacting manufacturing tolerances.