-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
DARPA Tests Advanced Chemical Sensors
May 3, 2019 | DARPAEstimated reading time: 3 minutes

DARPA’s SIGMA program, which began in 2014, has demonstrated a city-scale capability for detecting radiological and nuclear threats that is now being operationally deployed. DARPA is building off this work with the SIGMA+ initiative that is focused on providing city- to region-scale detection capabilities across the full chemical, biological, radiological, nuclear, and explosive threat space.
DARPA initiated a SIGMA+ pilot study last year known as ChemSIGMA to provide initial data and insights into how new chemical sensors using the existing SIGMA network would function. The chemical sensor package incorporates a chemical sensor, wind sensor and communications board into a weatherproof housing. Sensors report wind readings and real-time chemical information to a central cloud-hosted suite of fusion algorithms.
“The algorithms were developed using a custom simulation engine that fuses multiple detector inputs,” said Anne Fischer, program manager in DARPA’s Defense Sciences Office. “We built the algorithms based on simulant releases in a large metropolitan area—so we took existing data to build the algorithms for this network framework. With this network, we're able to use just the chemical sensor outputs and wind measurements to look at chemical threat dynamics in real time, how those chemical threats evolve over time, and threat concentration as it might move throughout an area.”
In the pilot study, DARPA researchers from MIT Lincoln Laboratory, Physical Sciences Inc., and Two Six Labs, built a small network of chemical sensor packages. In partnership with the Indianapolis Metropolitan Police Department, Indianapolis Motor Speedway, and the Marion County Health Department, DARPA’s performer teams deployed the network on-site at the Indianapolis Motor Speedway in late April 2018.
Sensors/network tested at the Indianapolis 500, May 2018
The chemical sensor network and the data collected during events such as the 2018 Indianapolis 500 were critical to the DARPA effort, allowing the team to assess the performance of the sensors and network algorithms. These tests were conducted in an urban environment to ensure that the system could handle complex and stochastic signals from species that are ever present in a city’s chemical background. Significantly, the network-level algorithm successfully improved system performance by correctly suppressing false detection events at the individual detector level. The group of DARPA researchers was also able to collect a large relevant data set and valuable user feedback that will guide ongoing system development efforts.
Further testing with safe simulant/concert smoke at Indianapolis Motor Speedway, August 2018
During additional tests in August 2018, a non-hazardous chemical simulant was released in the empty Indianapolis Motor Speedway at a realistic threat rate. Concert fog was also released to serve as a visible tracer. The propagation of the visible tracer was observed in aerial photography, and ChemSIGMA sensors and algorithms determined the release location with unprecedented accuracy. The web-based ChemSIGMA interface allows the user to view alerts in real time across a variety of devices. Multiple trials were conducted over the course of several days assessing performance over a variety of meteorological conditions. Releases occurred during daytime and nighttime with a full range of wind directions and speeds. The ChemSIGMA prototype system detected all of the simulant releases and generated zero false alarms over the course of testing.
Department of Defense simulant testing at Dugway Proving Ground, Utah, October 2018
“We're looking at how we might make this network more robust and more mature,” Fischer said. “For example, we implemented a network at Dugway Proving Ground as part of a DoD test for simulant releases, and have shown that the network can respond to a number of chemical simulant threats different than those used in Indianapolis, as well as built-in capabilities for mobile releases. Over the past few months, the team has used these data sets to further refine the algorithms, and plans to integrate and test them with the ChemSIGMA system in test events scheduled later this year.”
The successful pilot and simulant test of the ChemSIGMA system at the Indy500 and Dugway Proving Ground provided valuable, relevant, and realistic data sets for validation and verification of the source localization and plume propagation algorithms.
DARPA is currently extending the capabilities for networked chemical detection by advancing additional sensor modalities, including short-range point sensors based on techniques, such as mass spectrometry, and long-range spectroscopic systems. As these systems are further developed and matured, they will be integrated into the SIGMA+ continuous, real-time, and scalable network architecture to increase the system’s capabilities for city-scale monitoring of chemical and explosive threats and threat precursors.
Suggested Items
Driving Innovation: Direct Imaging vs. Conventional Exposure
07/01/2025 | Simon Khesin -- Column: Driving InnovationMy first camera used Kodak film. I even experimented with developing photos in the bathroom, though I usually dropped the film off at a Kodak center and received the prints two weeks later, only to discover that some images were out of focus or poorly framed. Today, every smartphone contains a high-quality camera capable of producing stunning images instantly.
Specially Developed for Laser Plastic Welding from LPKF
06/25/2025 | LPKFLPKF introduces TherMoPro, a thermographic analysis system specifically developed for laser plastic welding that transforms thermal data into concrete actionable insights. Through automated capture, evaluation, and interpretation of surface temperature patterns immediately after welding, the system provides unprecedented process transparency that correlates with product joining quality and long-term product stability.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
IBM, RIKEN Unveil First IBM Quantum System Two Outside of the U.S.
06/24/2025 | IBMIBM and RIKEN, a national research laboratory in Japan, today unveiled the first IBM Quantum System Two ever to be deployed outside of the United States and beyond an IBM Quantum Data Center.
Excellon Installs COBRA Hybrid Laser at Innovative Circuits
06/23/2025 | ExcellonExcellon is pleased to announce the successful installation of a second COBRA Hybrid Laser System at Innovative Circuits, located in Alpharetta, Georgia. The Excellon COBRA Hybrid Laser System uniquely combines both UV and CO₂ (IR) laser sources on a single platform—making it ideal for high-density prototype and production printed circuit boards (PCBs).