Scientists Develop Low-Cost Energy-Efficient Materials
April 24, 2019 | NUST MISISEstimated reading time: 1 minute

An international team of scientists from the National University of Science and Technology “MISIS” (NUST MISIS), Tianjin University (China), as well as from Japan and the United States has developed new energy-efficient iron-based alloys which combine high mechanical and magnetic properties with low cost and open up new opportunities for industry. The research results are published in the Journal of Alloys and Compounds.
Today, scientists from different countries are facing the task of creating new materials which would help to reduce losses in electricity transmission and transformation. This would lead to energy savings and help to reduce emissions of hazardous gases during production (including CO2 — one of the key factors for the greenhouse effect). Electronic devices could be reduced in size by increasing efficiency.
To solve this problem, the international team of scientists engaged in the development of amorphous softmagnetic alloys in low-cost alloy systems such as Fe-Si-B-Nb-Cu (iron-silicon-boron-niobium-copper).
“For the development of new alloys based on iron with a high complex of magnetic and strength properties, we have analyzed a large number of alloy compositions. At the same time, we tried to avoid the use of expensive alloying elements, such as niobium and molybdenum. All the alloys examined in the work were obtained using industrial technology —quenching from a liquid state (melt spinning technic,),” said Andrei Bazlov, one of the authors of the study, an engineer at NUST MISIS.
According to him, the analysis of a large number of Fe82-85B13-16Si1Cu1 alloys allowed scientists to determine the effect of their chemical composition and heat treatment modes on the magnetic and mechanical properties. As a result, they managed to obtain alloys with high magnetic properties, technological plasticity, and ultrahigh strength.
“In terms of their properties, the new amorphous iron-based alloys obtained by us surpass common industrial analogues not only in Russia but also abroad. Their undoubted advantages are relatively low cost (due to the lack of expensive alloying elements) and simplicity of industrial production,” said Andrei Bazlov.
Scientists will continue to develop new compositions and processing regimes of amorphous magnetically soft alloys. They are also planning to implement their developments in the industry.
Suggested Items
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.
The Chemical Connection: Surface Finishes for PCBs
03/31/2025 | Don Ball -- Column: The Chemical ConnectionWriting about surface finishes brings a feeling of nostalgia. You see, one of my first jobs in the industry was providing technical support for surface cleaning processes and finishes to enhance dry film adhesion to copper surfaces. I’d like to take this opportunity to revisit the basics, indulge in my nostalgia, and perhaps provide some insight into why we do things the way we do them in the here and now.
NUS Physicists Discover a Copper-free High-temperature Superconducting Oxide
03/28/2025 | PRNewswireProfessor Ariando and Dr Stephen Lin Er Chow from the National University of Singapore (NUS) Department of Physics have designed and synthesised a groundbreaking new material—a copper-free superconducting oxide—capable of superconducting at approximately 40 Kelvin (K), or about minus 233 degrees Celsius (deg C), under ambient pressure.
AT&S Sets New Standards in the Recycling of Copper and Chemicals
03/25/2025 | AT&SAT&S has been working for years to reduce the ecological footprint of its production sites worldwide with a comprehensive sustainability strategy and considerable investments.
Empowering the Future of Advanced Computing and Connectivity: DuPont Unveils Innovative Advanced Circuit Materials in Shanghai
03/24/2025 | DuPontDuPont will showcase how we are shaping the next generation of electronics at the International Electronic Circuits (Shanghai) Exhibition 2025.