Ushering in Ultrafast Cluster Electronics
April 5, 2019 | Hokkaido UniversityEstimated reading time: 1 minute
A new computational method can help fast track the development of tiny, ultrafast electronic devices made from small clusters of molecules.
Hokkaido University researchers have developed a computational method that can predict how clusters of molecules behave and interact over time, providing critical insight for future electronics. Their findings, published in the journal Scientific Reports, could lead to the creation of a new field of science called cluster molecular electronics.
Single molecule electronics is a relatively new, rapidly progressing branch of nanotechnology using individual molecules as electronic components in devices. Now, Hiroto Tachikawa and colleagues at Hokkaido University in Japan have developed a computational approach that can predict how clusters of molecules behave over time, which could help launch a new field of study for cluster molecule electronics. Their approach combines two methods traditionally used for quantum chemical and molecular dynamic calculations.
They used their method to predict the changes in a computer-simulated cluster of benzene molecules over time. When light is applied to the T-shaped benzene clusters, they reorganize themselves into a single stack; an interaction known as pi-stacking. This modification from one shape to another changes the cluster’s electrical conductivity, making it act like an on-off switch. The team then simulated the addition of a molecule of water to the cluster and found that pi-stacking happened significantly faster. This pi-stacking is also reversible, which would allow switching back and forth between the on and off modes.
When light is applied to the T-shaped benzene cluster in their computer simulation, they reorganized themselves into a single stack, changing its electrical conductivity. The addition of a molecule of water made the stacking occur significantly faster. (Tachikawa H., et al. Scientific Reports, February 20, 2019)
In contrast, previous studies had shown that the addition of a molecule of water to a single molecule electronic device impedes its performance.
“Our findings could usher in a new field of study that investigates the electronic performance of different numbers, types and combinations of molecular clusters, potentially leading to the development of cluster molecule electronic devices,” Tachikawa commented.
Suggested Items
The ICAPE Group Invests in Jiva Materials to Drive Eco-Friendly PCB Innovation in Europe
11/27/2024 | BUSINESS WIREICAPE Group, a global technology distributor of printed circuit boards (“PCB”) and custom-made electromechanical parts, today announced it will be acquiring a minority shareholding in Jiva Materials Ltd, a UK-based innovator and the developer of Soluboard® - the world’s first fully biodegradable PCB substrate.
Zollner Leverages electronica 2024 to Strengthen Global Partnerships
11/27/2024 | Zollner Elektronik AGZollner, a leading provider of electronic manufacturing services (EMS), successfully participated in electronica 2024, one of the world's largest trade fairs for electronics.
Kimball Electronics 'Pinks the Town Pink' with Soup Fundraiser to Support Breast Cancer Awareness
11/27/2024 | Kimball ElectronicsKimball Electronics recently held a successful fundraiser to support breast cancer awareness, partnering with the Memorial Hospital Foundation to provide life-saving mammograms to patients in need.
Creation Technologies, Rite-Hite Celebrate 35 Years of Manufacturing Excellence
11/27/2024 | Creation TechnologiesCreation Technologies, an end-to-end, scalable Specialty Global Electronic Manufacturing Services provider, and Rite-Hite, a premier manufacturer of loading dock equipment and industrial safety solutions, announce the celebration of their 35-year strategic manufacturing partnership.
sureCore Now Licensing its CryoMem Range of IP for Quantum Computing
11/26/2024 | sureCoresureCore, the memory specialist, has announced that it is now licensing its CryoMem™ suite of Memory IP that is designed for use at the extremely low temperatures required for Quantum Computing (QC) applications.