From Silicon to Systems
September 10, 2024 | Andy Shaughnessy, Design007 MagazineEstimated reading time: 2 minutes
For the past few years, IPC has been championing the term “silicon to systems.” More than a buzzword, it has become a slogan—and even a kind of roadmap—for the organization. The term comes in especially handy when IPC is advocating for this industry in Washington, D.C., often addressing politicians who have little understanding of electronics technology.
But what does silicon to systems mean to PCB designers? We asked this and more of a trio of IPC staffers: CTO Matt Kelly, Chief Strategist for Advanced Packaging Devan Iyer, and design instructor Kris Moyer, CID+. Does your company take a silicon-to-systems approach to design?
Andy Shaughnessy: Matt, what do you mean by silicon to systems?
Matt Kelly: The term silicon to systems was born in our IPC Advanced Packaging report in the fall of 2021. It was a notion that I used to try to simplify the breadth and the scope of everything that was going on at the time, and is still going on today, of course. A lot of the focus with the CHIPS Act in the United States, Europe, and other geographies has really revolved around the step function changes that are occurring with semiconductors and electronics packaging. This comes out in terms of the U.S. CHIPS Act in the design of those chips, the architectures, and the fact that Moore's Law has been running out of economic steam for quite some time.
Silicon to systems was really a way for us to go beyond the discussion of just the semiconductor and the packaging of that chip. It's very important because everything follows silicon. We are at the beginning of a 10-plus-year period of significant disruption because of this technology change and adoption. Silicon to systems is basically a way of saying, “You don't hold a chip in your hand.” You don't even hold a component in your hand; you hold a cellphone in your hand, and for that system to work, while these components and changes are absolutely important, it's really just one part among many more that makes up the system you are using.
It’s basically about having a very circumspect view, not just looking at your own silo. From a design perspective, all these new systems can be across any application while they're being dreamt up by the OEMs, with increased functionality and density, and all these great things that we're trying to do all in single devices. This is really being powered by these chip technologies. I know Devan has a lot to say in this area as well.
Devan Iyer: Thanks, Matt. I think that's a good start. Speaking of silicon to systems, this also includes the non-silicon devices like gallium nitride. If you really look at high-speed devices or high-power devices like silicon carbide or EV automotive applications, they’re outside the domain of silicon, but you can call that chip to systems or silicon to systems. Semiconductor to systems might be a more accurate term.
To read the entire article, which originally published in the September 2024 Design007 Magazine, click here.
Suggested Items
STMicroelectronics Details Company-Wide Program to Reshape Manufacturing Footprint and Resize Global Cost Base
04/14/2025 | STMicroelectronicsSTMicroelectronics N.V., a global semiconductor leader serving customers across the spectrum of electronics applications, disclosed further elements of its program to reshape its global manufacturing footprint.
IEEE Study Leverages Silicon Photonics for Scalable and Sustainable AI Hardware
04/14/2025 | PRNewswireThe emergence of AI has profoundly transformed numerous industries. Driven by deep learning technology and Big Data, AI requires significant processing power for training its models. While the existing AI infrastructure relies on graphical processing units (GPUs), the substantial processing demands and energy expenses associated with its operation remain key challenges.
TSMC, ASE Join Forces with 100+ Companies to Drive Silicon Photonics Technology Integration
04/11/2025 | SEMIThe SEMI Silicon Photonics Industry Alliance (SiPhIA) held the Bridging Light & Silicon: SEMI SiPhIA SIGs Kick-off & Seminar today, announcing the official launch of three Special Interest Groups (SIGs) aimed at integrating expertise from various sectors to formulate industry standards and accelerate technological innovation and commercialization.
DuPont Enhances Optical Silicone Technical Capabilities in Taiwan
04/07/2025 | DuPontDuPont announced the enhancement and expansion of its Optical Silicone Lab at its Taoyuan site in Taiwan.
Teradyne Announces Production System for Double-Sided Wafer Probe Test for Silicon Photonics
04/02/2025 | TeradyneTeradyne, a leading provider of automated test equipment, has partnered with ficonTEC, a global leader in production solutions for photonics assembly and test, to announce the availability of the first high-volume, double-sided wafer probe test cell for silicon photonics.