-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
ispace RESILIENCE Lunar Lander Successfully Achieves Testing Milestone in Preparation for Mission 2
June 28, 2024 | BUSINESS WIREEstimated reading time: 3 minutes

ispace, inc., a global lunar exploration company, announced today that the flight model of its HAKUTO-R Mission 2 RESILIENCE lunar lander has successfully completed thermal vacuum testing and remains on schedule for a Winter 2024 launch.
The testing was completed at the Japan Aerospace Exploration Agency (JAXA) Tsukuba Space Center in Tsukuba, Japan, where the agency operates a large testing facility. The flight model was assembled at the facility and all payloads or testing models were integrated into the lunar lander before testing began.
All test success criteria were met; ispace engineers are now reviewing the detailed data that RESILIENCE collected during the ten-day testing regime. The results will allow engineers to optimize the spacecraft thermally for spaceflight as well as improve flight operation procedures.
Thermal vacuum testing is conducted in a large chamber that allows the lunar lander to experience conditions similar to what it will face during its journey through outer space including extreme temperatures in a vacuum environment. Initial test results indicated successful operation of power systems, guidance, navigation and control (GNC) equipment, radio communications, and thermal control of the lander while simulating an actual spaceflight. During testing in the chamber, ispace operators utillized the lander’s onboard radio to assess connections, send commands to, and receive telemetry from the lander, further simulating actual flight operations.
“Lessons learned” obtained during Mission 1 pre-launch testing processes as well as actual flight data were applied to the current testing operations to optimize efficiency and ensure more rigorous testing of the lander systems.
“I am grateful for the efforts of ispace’s employees as the RESILIENCE lunar lander has achieved another significant testing milestone in preparation for Mission 2,” said Takeshi Hakamada, Founder and CEO of ispace. “Conducting multiple missions in relatively short intervals has improved the maturity of our team and the technology itself. We are dedicated to mission success and will continue to work towards realizing our vision of high-frequency, low-cost lunar transportation services.”
“The successful completion of the thermal vacuum test for Mission 2 was a great achievement. I am proud of the efforts of the team involved in this operation by improving the process based on our experience from Mission 1 and the lander performed well, as we expected,” said Ryo Ujiie, CTO of ispace. “The RESILIENCE lander is quickly moving towards final preparations for launch and we are pleased with progress.”
Mission 2, ispace’s second lunar exploration mission, is expected to launch on a SpaceX Falcon 9 rocket from Cape Canaveral, Fla. RESILIENCE will deliver commercial and scientific equipment to the lunar surface and is expected to contribute to the NASA-led Artemis program. In addition to its commercial payloads, the mission will include a micro rover that will deploy from the lunar lander and conduct surface exploration including the collection of lunar regolith.
In December 2020, ispace EUROPE was selected by NASA to acquire regolith from the lunar surface to be purchased by the space agency. In furtherance of this effort, a shovel developed by Epiroc AB, a leading productivity and sustainability partner for the mining and infrastructure industries, and a corporate partner participating in the HAKUTO-R program, has been delivered and mounted on the micro rover. Once on the lunar surface, ispace operators plan to use the shovel to collect a sample of lunar regolith and photograph the collection with the camera mounted on the rover.
ispace is leveraging its global presence through its three business units in Japan, the U.S., and Luxembourg, for the simultaneous development of Mission 2 and Mission 3. Mission 2 is planned for 2024, led by the ispace Japan entity, and Mission 3 in 2026, led by the ispace U.S. entity. Mission 6, which will utilize the Series 3 lander, being designed in Japan, is scheduled to be launched by 2027.
Suggested Items
SAIC Awarded New $55 Million Mission Integration Contract From Space Development Agency
05/05/2025 | SAICScience Applications International Corp. has been awarded the Proliferated Warfighter Space Architecture (PWSA) Tranche 3 Program Integration (T3PI) contract from the Space Development Agency (SDA).
The EEcosystem and Dr. Eric Bogatin Launch Free Masterclass for Electronics Engineers
05/01/2025 | The EEcosystemThe EEcosystem, a podcast media and education brand serving professional electronics engineers, is proud to announce the launch of a new online learning platform: The EEcosystem Electronics Masterclass. The platform debuts with Transmission Lines 101, a free course created in partnership with world-renowned signal integrity expert Dr. Eric Bogatin. The course will be available starting May 1, 2025.
BAE Systems Selected to Enhance Ground System for Space Force Missile Warning Satellites
04/29/2025 | BAE SystemsBAE Systems has been selected by U.S. Space Force Space Systems Command to provide a new satellite command and control (C2) system for its Future Operationally Resilient Ground Evolution (FORGE) program.
TSMC Commits to Ambitious Carbon Reduction Path in Line with Science Based Targets Initiative
04/23/2025 | TSMCTSMC marked Earth Day by announcing its commitment to the Science Based Targets Initiative (SBTi,) underscoring its dedication to addressing the pressing challenges of climate change. In line with SBTi, TSMC is collaborating with partners to achieve its environmental sustainability goals, embarking on an ambitious and comprehensive carbon reduction path encompassing direct, indirect and value chain emissions.
GlobalFoundries Accelerates GHG Reductions Commitments with Near Term Science-Based Target
04/23/2025 | GlobalFoundriesGlobalFoundries announced it will accelerate its near-term greenhouse gas (GHG) emission reduction goals, enhancing the company’s commitment to sustainable operations and further supporting the sustainability leadership of partners including Apple and Infineon Technologies AG. GF’s revised targets will be set in line with Science Based Target Initiative (SBTi) standards.