-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Successful Demonstration of a Superconducting Circuit for Qubit Control within Large-scale Quantum Computer Systems
June 3, 2024 | JCN NewswireEstimated reading time: 1 minute
In support of the development of large-scale superconducting quantum computers, researchers with the National Institute of Advanced Industrial Science and Technology (AIST), one of the largest public research organizations in Japan, in collaboration with Yokohama National University, Tohoku University, and NEC Corporation, proposed and successfully demonstrated a superconducting circuit that can control many qubits at low temperature.
To realize a practical quantum computer, it is necessary to control the state of a huge number of qubits (as many as one million) operating at low temperature. In conventional quantum computers, microwave signals for controlling qubits are generated at room temperature and are individually transmitted to qubits at low temperature via different cables. This results in numerous cables between room and low temperature and limits the number of controllable qubits to approximately 1,000.In this study, a superconducting circuit that can control multiple qubits via a single cable using microwave multiplexing was successfully demonstrated in proof-of-concept experiments at 4.2 K in liquid helium. This circuit has the potential of increasing the density of microwave signals per cable by approximately 1,000 times, thereby increasing the number of controllable qubits significantly and contributing to the development of large-scale quantum computers.The above results will be published in "npj Quantum Information" on June 3 at 10 a.m. London time.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Rigetti, in Collaboration with QphoX, Awarded $5.8M AFRL Contract to Advance Superconducting Quantum Networking
09/29/2025 | RigettiRigetti Computing, Inc., a pioneer in hybrid quantum-classical computing, announced that it was awarded a three-year, $5.8 million contract from the Air Force Research Laboratory (AFRL) to advance superconducting quantum networking.
Iceberg Quantum Boosts Diraq’s Error-Correction Expertise
08/12/2025 | DiraqDiraq has partnered with new venture Iceberg Quantum to extract early value from its quantum computers. Diraq has a clear line of sight towards delivering quantum computers that are utility scale, the point at which commercial value exceeds operational cost.
QpiAI Announces Dawn of Quantum Era in India With 25 Qubit Quantum Computer
04/16/2025 | BUSINESS WIREQpiAI, a leader in quantum computing and generative AI, announced its First Quantum computer launch code named QpiAI Indus Quantum Computer.
Imec Achieves Record-low Charge Noise for Si MOS Quantum Dots Fabricated on a 300mm CMOS Platform
07/30/2024 | ImecImec, a world-leading research and innovation hub in nanoelectronics and digital technologies, announced the demonstration of high quality 300mm-Si-based quantum dot spin qubit processing with devices resulting in a statistically relevant, average charge noise of 0.6µeV/√ Hz at 1Hz.
Intel Takes Next Step Toward Building Scalable Silicon-Based Quantum Processors
05/02/2024 | BUSINESS WIRENature published an Intel research paper, “Probing single electrons across 300-mm spin qubit wafers,” demonstrating state-of-the-art uniformity, fidelity and measurement statistics of spin qubits.