-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueVoices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
The Essential Guide to Surface Finishes
We go back to basics this month with a recount of a little history, and look forward to addressing the many challenges that high density, high frequency, adhesion, SI, and corrosion concerns for harsh environments bring to the fore. We compare and contrast surface finishes by type and application, take a hard look at the many iterations of gold plating, and address palladium as a surface finish.
It's Show Time!
In this month’s issue of PCB007 Magazine we reimagine the possibilities featuring stories all about IPC APEX EXPO 2025—covering what to look forward to, and what you don’t want to miss.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Fujitsu, QuTech Developing Technology for Freezing Electronics to Control Diamond Spin Qubits
February 26, 2024 | JCN NewswireEstimated reading time: 3 minutes
Fujitsu announced a collaboration with QuTech (1) for the development of the world's first cryogenic electronic circuits for controlling diamond-based quantum bits. Enabling convenient operation of both the qubits and the control electronics in a compact cryogenic refrigerator, the new technique addresses the ‘wiring bottleneck’ in cooling qubits while maintaining high quality performance, marking a significant milestone toward the realization of larger-scale quantum computers.
QuTech will present the results of the joint research project with Fujitsu at the "International Conference on Solid State Device Circuits ISSCC 2024 (IEEE International Solid-State Circuits Conference 2024)," one of the largest conferences on semiconductor technology to be held in San Francisco, U.S., from February 18, 2024 to Thursday, February 22.
Background
Qubits make use of extremely fragile quantum effects that are perturbed by various influences including smallest amount of heat. Heat leaking into quantum computers would immediately destroy the information that a qubit was holding, rendering any quantum computer unreliable and unusable. To assure accurate operation, qubits need to be cooled down to the coldest temperatures possible, close to absolute zero kelvin (-273°C).
Accurate operation of the electronic circuits controlling the qubit represents an ongoing challenge, and conventional methods to keep qubits cold enough require a small cryogenic refrigerator, where qubits are connected with wires to the electronics outside the fridge.However, wires between the cold qubits and the room-temperature electronics significantly impact reliability, manufacturing and the size of quantum computers.
To address this, Fujitsu in collaboration with researchers and engineers at QuTech—a collaboration between the TU Delft and TNO – developed a new technique leveraging QuTech’s expertise in cryogenic semiconductor integrated circuit (cryo-CMOS circuit) technology and diamond spin qubit, which is more robust to heat disturbance, to successfully drive a diamond spin qubit using a cryo-CMOS circuit installed in a cryogenic refrigerator. The new technology enables the installation of a cryo-CMOS circuit at the same temperature as a diamond spin qubit (4 Kelvin), which can simplify wiring and lead to the construction of high-performance, large-scale integrated quantum computers.
Newly developed technology to cool electronics
Fujitsu in collaboration with QuTech developed a new technology that cools the whole quantum computer instead of just the qubits. Leveraging cryo-CMOS circuit technology, Fujitsu together with QuTech designed a magnetic field application circuit and a microwave driving circuit necessary for driving a diamond spin qubit at 4 Kelvin. By driving this magnetic field application circuit and microwave driving circuit in the same cryogenic refrigerator as the qubit, Fujitsu and QuTech successfully generated a magnetic field and microwaves strong enough to drive the diamond spin qubit.
The new technology simplifies wiring, and may one day contribute to the realization of high-performance, large-scale integrated quantum computers.
Fabio Sebastiano, Lead Investigator, QuTech, explains: “In designing electrical systems, there is always a balance between performance and power: the increase of one means a decrease of the other. Our challenge is obtaining high performance, while also not limiting the power consumption.” Masoud Babaie, Principal Investigator, QuTech adds: “This is crucial as too much power could overheat the cryogenic refrigerator used to keep the system at a low temperature. We used specific cryogenic electronic controllers (cryo-CMOS controllers) to alleviate the interconnect bottleneck: now we need fewer wires to enter the cryogenic fridge, which greatly enhances the scalability of the whole quantum computer.”
Dr. Shintaro Sato, Fellow, SVP & Head of Quantum Laboratory at Fujitsu Research, Fujitsu Limited, explains: "Wiring between control circuits and qubits is a common problem in the process of scaling up quantum computers. Results of our joint research highlight the potential of cryo-CMOS technology for diamond spin qubits to overcome this bottleneck. We anticipate that the new technology will enable us to achieve the high scalability expected in quantum computers using diamond spin qubits."
Future Plans
Realizing cryogenic electronic circuits for controlling diamond-based quantum bits, the newly developed technology signifies a significant step toward the realization of large-scale quantum computers. Moving forward, Fujitsu and QuTech will further enhance the newly developed technology, including the expansion from 1-qubit operation to 2-qubit operations, implementation of the qubit read-out functionality, and the scaling up to a larger quantum processors.
Suggested Items
NASA Aims to Fly First Quantum Sensor for Gravity Measurements
04/18/2025 | NASAA lumpy, colorful 3D model of the Earth against a black background, illustrating variations in gravity. North and South America are visible. Red areas show higher gravity, blue areas show lower gravity.
QpiAI Announces Dawn of Quantum Era in India With 25 Qubit Quantum Computer
04/16/2025 | BUSINESS WIREQpiAI, a leader in quantum computing and generative AI, announced its First Quantum computer launch code named QpiAI Indus Quantum Computer.
IDTechEx Explores Emerging Applications for PICs
04/11/2025 | IDTechExPhotonic integrated circuits are the optical equivalent of microchips, using semiconductor industry processes to shrink many photonic components down onto a piece of material often smaller than a human fingernail.
Sparrow Quantum Secures €21.5 Million to Accelerate Photonic Quantum Innovation in Europe
04/10/2025 | BUSINESS WIRESparrow Quantum, a leading European supplier of photonic quantum chips, has secured €21.5 million in Series A funding to accelerate the development and commercialization of its world-leading quantum chip technology.
Bosch Establishes Company with Element Six
04/08/2025 | BoschThey cannot be grasped, either literally or figuratively. Yet their potential is revolutionary, and they are a key technology of the future. We are talking about quanta.