SkyWater and MIT Begin Second Phase of DARPA-funded 3DSoC Program
August 21, 2020 | Business WireEstimated reading time: 2 minutes

SkyWater Technology, the trusted technology realization partner, announced the DARPA Three Dimensional Monolithic System-on-a-Chip (3DSoC) program, in collaboration with Massachusetts Institute of Technology (MIT), has entered its second phase. After completing the program’s initial phase, focused on transferring the Carbon Nanotube Field Effect Transistor (CNFET)-based 3DSoC technology into SkyWater’s 200 mm production facility, phase two will focus on refining manufacturing quality, yield, performance, and density; key elements of commercial viability. The 3DSoC program aims to shift cost/performance benchmarks that have been the standard for decades. This new paradigm is expected to accelerate AI and advanced computing across use cases in autonomous vehicles, medical/healthcare diagnostics, edge computing, wearables, and IoT applications.
The DARPA 3DSoC program, which began in 2018, has realized several technical achievements after running a wide variety of test chips to improve CNT manufacturability and reliability. A 3DSoC program update will be presented by MIT professor, Dr. Max Shulaker at the virtual 2020 DARPA Electronics Resurgence Initiative (ERI) Summit on August 20th. The program team’s work on the 3DSoC program was presented in June at the virtual 2020 Symposia on VLSI Technology and Circuits, highlighting BEOL monolithic 3D integration of CNFETs + RRAM and first hardware demonstrations of the monolithically integrated 3DSoC technology with SRAM and RISC-V compute core. The update also covered the team’s development of an industrial-grade foundry process design kit (PDK) for the 3DSoC technology platform, which marks a significant milestone to enable customer designs in SkyWater’s Early Access Program.
Additionally, the work on foundry integration by MIT and SkyWater was published recently in Nature Electronics demonstrating the methodologies employed to volume manufacture CNTs on 200 mm wafers in the same commercial facilities that fabricate silicon-based transistors. This important step in taking CNTs from the lab to the factory floor paves the way for more energy efficient, 3D microprocessors.
Notably, the technology enables the ability to monolithically integrate stackable tiers of CNT-based logic and RRAM to realize a high-density, high-bandwidth SoC architecture, all with low temperature fabrication techniques. While this is anticipated to accelerate AI and advanced computing, it also opens new dimensions of innovation and potentially enables backend logic integration with non-silicon substrates. This development would bring new possibilities for monolithic heterogeneous integration, which will lead to on-chip logic for new imaging, smart sensors, power management, and many other undiscovered applications.
“We are excited to continue this journey with MIT to fulfill the unique promise of carbon nanotube technology to the semiconductor industry, with disruptive implications for artificial intelligence and leading-edge computing applications across commercial and defense industries,” said Dr. Brad Ferguson, SkyWater Chief Technology Officer.
Added Thomas Sonderman, SkyWater President, “This program is proving the viability and scalability of CNFETs and demonstrates SkyWater’s broader commitment to support the resurgence of advanced manufacturing capabilities in the U.S.”
“It is really exciting to take this giant step forward and hit milestones inside of a foundry environment, making this leap into production. This marks a time for the industry to take notice of CNTs as a much more energy efficient alternative than silicon-based transistors and prepare product roadmaps for this disruptive technology,” said Dr. Max Shulaker, MIT Professor of Electrical Engineering and Computer Science.
Suggested Items
NASA Aims to Fly First Quantum Sensor for Gravity Measurements
04/18/2025 | NASAA lumpy, colorful 3D model of the Earth against a black background, illustrating variations in gravity. North and South America are visible. Red areas show higher gravity, blue areas show lower gravity.
Hanon Systems Wins Third PACE Award for Visible-Light LED Photocatalyst Technology
04/18/2025 | PRNewswireHanon Systems, a leading global automotive thermal management supplier and subsidiary of Hankook & Company Group, has been named a winner of the 2025 PACE Awards. This marks the company's third win, making it the first Korean supplier to achieve this recognition.
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.
Real Time with... IPC APEX EXPO 2025: Emerging Trends in Design and Technology
04/16/2025 | Real Time with...IPC APEX EXPOAndy Shaughnessy speaks with IPC design instructor Kris Moyer to discuss emerging design trends. They cover UHDI technology, 3D printing, and optical data transmission, emphasizing the importance of a skilled workforce. The role of AI in design is highlighted, along with the need for understanding physics and mechanics as designs become more complex. The conversation concludes with a focus on enhancing math skills for better signal integrity.
INEMI Announces Board of Directors Election Results
04/16/2025 | iNEMIThe International Electronics Manufacturing Initiative (INEMI) has announced results from its recent Board of Directors election. The consortium’s members have added one new director and re-elected four incumbents.