-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueAdvancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
Sales: From Pitch to PO
From the first cold call to finally receiving that first purchase order, the July PCB007 Magazine breaks down some critical parts of the sales stack. To up your sales game, read on!
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Surface Treatment Enabling Low-Temperature Soldering to Aluminum
July 15, 2019 | Divyakant Kadiwala, Averatek CorporationEstimated reading time: 4 minutes

Abstract
The majority of flexible circuits are made by patterning copper metal that is laminated to a flexible substrate, which is usually polyimide film of varying thicknesses. An increasingly popular method to meet the need for lower cost circuitry is the use of aluminium on polyester (Al-PET) substrates. This material is gaining popularity and has found wide use in RFID tags, low-cost LED lighting, and other single-layer circuits. However, both aluminium and PET have their own constraints and require special processing to make finished circuits. Aluminum is not easy to solder components to at low temperatures, and PET cannot withstand high temperatures. Soldering to these materials requires either an additional surface treatment or the use of conductive epoxy to attach components. Surface treatment of aluminum includes the likes of electroless nickel immersion gold plating (ENIG), which is extensive wet chemistry and cost-prohibitive for mass adoption.
Conductive adhesives, including anisotropic conductive paste (ACP), are another alternative to soldering components. These result in component-substrate interfaces that are inferior to conventional solders in terms of performance and reliability. An advanced surface treatment technology will be presented that addresses all these constraints. Once applied on aluminum surfaces using conventional printing techniques such as screen, stencil, etc., it is thermally cured in a convection oven at low temperatures. This surface treatment is non-conductive. To attach a component, a solder bump on the component or solder printed on the treated pad is needed before placing the component. The aluminum circuit will pass through a reflow oven, as is commonly done in PCB assembly. This allows for the formation of a true metal-to-metal bond between the solder and the aluminum on the pads. This process paves the way for large-scale, low-cost manufacturing of Al-PET circuits.
Introduction
Aluminum is the most abundant metal in the earth’s crust. Its alloys have found wide use as a building material in the construction of automobiles, aircraft, bicycles, building frames, etc. Other uses range from electrical connectors, packaging cans and foils, and household utensils. While it is a material of choice in the above fields, it is second to copper in the field of flexible circuits.
This is despite the various advantages that aluminum has over copper. Aluminum is more than three times lighter than copper. The density of aluminum is 2.7 gm/cm3 while that of copper is 8.92 gm/cm3. Its electrical resistivity is 26.5 nΩ·m (at 20°C) while that of copper is 16.78 nΩ·m (at 20°C). Also, its thermal conductivity is 237 W/(m·K) while that of copper is 401 W/(m·K).
Although it is not as good an electrical and thermal conductor as copper, it can radiate heat better than copper due to its lower density. Overall, aluminum has 68% of the conductivity of copper but has only 30% of the weight of copper. This means that a bare wire of aluminum weighs half as much as a bare wire of copper that has the same electrical resistance. This will be similar for aluminium traces in the case of flexible circuits.
Also, aluminum is generally less expensive when compared to copper conductors. A recent check indicated the price of aluminium was 35% less than that of copper. It is three times less expensive than copper on an equal weight basis and six times less expensive on an actual usage basis. This is the biggest advantage that aluminum has over copper. Table 1 lists the comparative properties of the two metals relevant to flexible circuits.
Flexible Circuits and Al-PET Substrates
The majority of flexible circuits are made using copper on polyimide (Cu-PI) substrates. These consist of copper foil laminated onto polyimide film. Varying the thickness of copper and polyimide gives rise to various combinations of thicknesses of Cu-PI to suit the conductivity and dielectric requirements of the end applications. Traces are formed using photolithography followed by a print-and-etch process. Components are soldered on to make the finished circuits. A reasonable selection of solders is available that can easily bond to copper traces without the need for any special surface treatment.
Table 1: Properties of aluminum and copper.
An increasingly popular method to make flexible circuits is by using aluminum on PET (polyethylene terephthalate) or Al-PET substrates. These are available in varying thickness of aluminum foil laminated onto PET film (Figure 1).
While aluminum is less expensive than copper, PET is also significantly cheaper than polyimide film. Hence, lower material cost is a major driver for the increasing use of Al- PET substrates, but their use has been limited because of processing challenges.
Figure 1: Typical laminated construction of Al-PET substrates.
The process to generate the traces on aluminium substrates is similar to that of copper. A dry-film or liquid resist is used for photolithography, which is then followed by chemical print-and-etch to form aluminum traces. But attaching the components onto aluminium is a challenge. Unlike copper, it is not easy to solder to aluminum. Soldering to aluminum is difficult because of the presence of a thin layer of aluminum oxide. This layer forms naturally when the bare metal is exposed to air. Since most flexible circuit manufacturing is done under atmospheric conditions, all aluminum surfaces will have an oxide layer. While the formation of this natural oxide is self-limiting, its presence cannot be overcome by the flux used in existing solder pastes. If harsher fluxes are used within solder pastes to address the aluminum oxide problem, they will cause corrosion of the very thin aluminum layers and thus reliability problems.
There are two methods currently used to attach components to Al-PET substrates: one is the zincate and plating process while the second is using conductive epoxy.
To read the full article, which appeared in the July 2019 issue of SMT007 Magazine, click here.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Indium Corporation Earns Mexico Technology Award for New Halogen-Free Flux-Cored Wire
09/18/2025 | Indium CorporationIndium Corporation recently earned a Mexico Technology Award for its new high-reliability, halide- and halogen-free flux-cored wire, CW-807RS, which improves wetting speeds and cycle times for electronics assembly and robot soldering applications.
MacDermid Alpha Showcases Advanced Interconnect Solutions at PCIM Asia 2025
09/18/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronic Solutions, a global leader in materials for power electronics and semiconductor assembly, will showcase its latest interconnect innovations in electronic interconnect materials at PCIM Asia 2025, held from September 24 to 26 at the Shanghai New International Expo Centre, Booth N5-E30
Breakthrough in Non-Contact Solder Removal Earns Kurtz Ersa 2025 Mexico Technology Award at SMTA Guadalajara
09/18/2025 | Kurtz Ersa Inc.Kurtz Ersa Inc., a leading supplier of electronics production equipment, is proud to announce that it has been awarded a 2025 Mexico Technology Award in the category of Rework & Repair for its HR 600P Automatic Rework System.
Knocking Down the Bone Pile: Best Practices for Electronic Component Salvaging
09/17/2025 | Nash Bell -- Column: Knocking Down the Bone PileElectronic component salvaging is the practice of recovering high-value devices from PCBs taken from obsolete or superseded electronic products. These components can be reused in new assemblies, reducing dependence on newly purchased parts that may be costly or subject to long lead times.
Koh Young, Fuji, and Kurtz ERSA Drive Smart Manufacturing Solutions for EV and Automotive Electronics at Kunshan, China Technical Seminar
09/11/2025 | Koh YoungKoh Young Technology, the global leader in True 3D measurement-based inspection solutions, partnered with Fuji Corporation and Kurtz ERSA to host an exclusive technical seminar for leading automotive manufacturers in East China. Held on September 4 at Fuji’s factory in Kunshan, the event gathered participants representing over 35 companies.