-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current Issue
The Legislative Outlook: Helping or Hurting?
This month, we examine the rules and laws shaping the current global business landscape and how these factors may open some doors but may also complicate business operations, making profitability more challenging.
Advancing the Advanced Materials Discussion
Moore’s Law is no more, and the advanced material solutions to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
Inventing the Future With SEL
Two years after launching its state-of-the-art PCB facility, SEL shares lessons in vision, execution, and innovation, plus insights from industry icons and technology leaders shaping the future of PCB fabrication.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
Researchers Control the Properties of Graphene Transistors Using Pressure
May 17, 2018 | Columbia UniversityEstimated reading time: 3 minutes
A Columbia University-led international team of researchers has developed a technique to manipulate the electrical conductivity of graphene with compression, bringing the material one step closer to being a viable semiconductor for use in today’s electronic devices.
“Graphene is the best electrical conductor that we know of on Earth,” said Matthew Yankowitz, a postdoctoral research scientist in Columbia’s physics department and first author on the study. “The problem is that it’s too good at conducting electricity, and we don’t know how to stop it effectively. Our work establishes for the first time a route to realizing a technologically relevant band gap in graphene without compromising its quality. Additionally, if applied to other interesting combinations of 2D materials, the technique we used may lead to new emergent phenomena, such as magnetism, superconductivity, and more.”
The study, funded by the National Science Foundation and the David and Lucille Packard Foundation, appears in the May 17 issue of Nature.
The unusual electronic properties of graphene, a two-dimensional (2D) material comprised of hexagonally-bonded carbon atoms, have excited the physics community since its discovery more than a decade ago. Graphene is the strongest, thinnest material known to exist. It also happens to be a superior conductor of electricity – the unique atomic arrangement of the carbon atoms in graphene allows its electrons to easily travel at extremely high velocity without the significant chance of scattering, saving precious energy typically lost in other conductors.
But turning off the transmission of electrons through the material without altering or sacrificing the favorable qualities of graphene has proven unsuccessful to-date.
“One of the grand goals in graphene research is to figure out a way to keep all the good things about graphene but also create a band gap – an electrical on-off switch,” said Cory Dean, assistant professor of physics at Columbia University and the study’s principal investigator. He explained that past efforts to modify graphene to create such a band gap have degraded the intrinsically good properties of graphene, rendering it much less useful. One superstructure does show promise, however. When graphene is sandwiched between layers of boron nitride (BN), an atomically-thin electrical insulator, and the two materials are rotationally aligned, the BN has been shown to modify the electronic structure of the graphene, creating a band gap that allows the material to behave as a semiconductor – that is, both as an electrical conductor and an insulator. The band gap created by this layering alone, however, is not large enough to be useful in the operation of electrical transistor devices at room temperature.
In an effort to enhance this band gap, Yankowitz, Dean, and their colleagues at the National High Magnetic Field Laboratory, the University of Seoul in Korea, and the National University of Singapore, compressed the layers of the BN-graphene structure and found that applying pressure substantially increased the size of the band gap, more effectively blocking the flow of electricity through the graphene.
“As we squeeze and apply pressure, the band gap grows,” Yankowitz said. “It’s still not a big enough gap – a strong enough switch – to be used in transistor devices at room temperature, but we have gained a fundamentally better understanding of why this band gap exists in the first place, how it can be tuned, and how we may target it in the future. Transistors are ubiquitous in our modern electronic devices, so if we can find a way to use graphene as a transistor it would have widespread applications.”
Yankowitz added that scientists have been conducting experiments at high pressures in conventional three-dimensional materials for years, but no one had yet figured out a way to do them with 2D materials. Now, researchers will be able to test how applying various degrees of pressure changes the properties of a vast range of combinations of stacked 2D materials.
“Any emergent property that results from the combination of 2D materials should grow stronger as the materials are compressed,” Yankowitz said. “We can take any of these arbitrary structures now and squeeze them and the strength of the resulting effect is tunable. We’ve added a new experimental tool to the toolbox we use to manipulate 2D materials and that tool opens boundless possibilities for creating devices with designer properties.”
-By Jessica Guenzel
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
SEMI Foundation Honors Applied Materials at SEMICON West with 2025 Excellence in Achievement Award for Talent Development
11/04/2025 | SEMIThe SEMI Foundation announced it recognized Applied Materials, Inc. with the Excellence in Achievement Award at SEMICON West 2025 in Phoenix, Arizona, honoring the company’s outstanding leadership and collaboration in building the next generation of semiconductor talent.
Sealed for Survival: Potting Electronics for the Toughest Environments
10/29/2025 | Beth Massey, MacDermid Alpha Electronics SolutionsElectronics deployed in harsh conditions face relentless threats from vibration, impact, chemical contaminants, airborne pollutants, and moisture, conditions that can quickly lead to failure without robust protection. Potting, the process of encapsulating electronics in a protective polymer, is a widely used strategy to safeguard devices from both environmental and mechanical hazards.
Driving Innovation: Mechanical and Optical Processes During Rigid-flex Production
10/28/2025 | Kurt Palmer -- Column: Driving InnovationRigid-flex printed circuit boards are a highly effective solution for placing complex circuitry in tight, three-dimensional spaces. They are now indispensable across a range of industries, from medical devices and aerospace to advanced consumer electronics, helping designers make the most efficient use of available space. However, their unique construction—combining rigid and flexible materials—presents a fundamental challenge for PCB manufacturers.
SMTAI 2025 Review: Reflecting on a Pragmatic and Forward-looking Industry
10/27/2025 | Marcy LaRont, I-Connect007Leaving the show floor on the final afternoon of SMTA International last week in Rosemont, Illinois, it was clear that the show remains a grounded, technically driven event that delivers a solid program, good networking, and an easy space to commune with industry colleagues and meet with customers.
ITW EAE Despatch Ovens Now Support ASTM 5423 Testing
10/15/2025 | ITW EAEAs the demand for high-performance electrical insulation materials continues to grow—driven by the rapid expansion of electric vehicles (EVs) and energy storage systems—thermal processing has become a critical step in material development.