Scientists Harness Solar Power to Produce Clean Hydrogen From Biomass
March 14, 2017 | University of CambridgeEstimated reading time: 3 minutes

A team of scientists at the University of Cambridge has developed a way of using solar power to generate a fuel that is both sustainable and relatively cheap to produce. It’s using natural light to generate hydrogen from biomass.
One of the challenges facing modern society is what it does with its waste products. As natural resources decline in abundance, using waste for energy is becoming more pressing for both governments and business.
Biomass has been a source of heat and energy since the beginning of recorded history. The planet’s oil reserves are derived from ancient biomass which has been subjected to high pressures and temperatures over millions of years. Lignocellulose is the main component of plant biomass and up to now its conversion into hydrogen has only been achieved through a gasification process which uses high temperatures to decompose it fully.
Dr Moritz Kuehnel, from the Department of Chemistry at the University of Cambridge, joint lead author on a new research paper published in Nature Energy, says:
"Lignocellulose is nature's equivalent to armoured concrete. It consists of strong, highly crystalline cellulose fibres, that are interwoven with lignin and hemicellulose which act as a glue. This rigid structure has evolved to give plants and trees mechanical stability and protect them from degradation, and makes chemical utilisation of lignocellulose so challenging."
The new technology relies on a simple photocatalytic conversion process. Catalytic nanoparticles are added to alkaline water in which the biomass is suspended. This is then placed in front of a light in the lab which mimics solar light. The solution is ideal for absorbing this light and converting the biomass into gaseous hydrogen which can then be collected from the headspace. The hydrogen is free of fuel-cell inhibitors, such as carbon monoxide, which allows it to be used for power.
The nanoparticle is able to absorb energy from solar light and use it to undertake complex chemical reactions. In this case, it rearranges the atoms in the water and biomass to form hydrogen fuel and other organic chemicals, such as formic acid and carbonate.
Joint lead author, Dr David Wakerley, also of the Department of Chemistry, says:
“There’s a lot of chemical energy stored in raw biomass, but it’s unrefined, so you can’t expect it to work in complicated machinery, such as a car engine. Our system is able to convert the long, messy structures that make up biomass into hydrogen gas, which is much more useful. We have specifically designed a combination of catalyst and solution that allows this transformation to occur using sunlight as a source of energy. With this in place we can simply add organic matter to the system and then, provided it’s a sunny day, produce hydrogen fuel.”
The team used different types of biomass in their experiments. Pieces of wood, paper and leaves were placed in test tubes and exposed to solar light. The biomass didn’t require any processing beforehand.
The technology was developed in the Christian Doppler Laboratory for Sustainable SynGas Chemistry at the University of Cambridge. The head of the laboratory, Dr. Erwin Reisner, adds:
“Our sunlight-powered technology is exciting as it enables the production of clean hydrogen from unprocessed biomass under ambient conditions. We see it as a new and viable alternative to high temperature gasification and other renewable means of hydrogen production.
Future development can be envisioned at any scale, from small scale devices for off-grid applications to industrial-scale plants, and we are currently exploring a range of potential commercial options."
With the help of Cambridge Enterprise, the commercialisation arm of the University, a UK patent application has been filed and talks are under way with a potential commercial partner.
Suggested Items
One World, One Industry: Mapping the Future of the Electronics Workforce
02/21/2025 | John Mitchell -- Column: One World, One IndustryWhen we think of everything that impacts the world economy, I can’t help but think of electronics. They impact everything. As you have heard me say over the past few years, electronics is no longer a vertical, it’s a horizontal. As practically every industry sector relies on natural resources like water and fossil fuels, they also rely on a manmade resource—electronics. From agriculture to automotive and AI to aerospace, I can’t think of any industry that does not rely heavily upon electronics as it maps out the future.
Unveiling the Future: Insights on Next-Gen Megtron Materials
02/13/2025 | Marcy LaRont, I-Connect007In this interview from DesignCon, Jim Kenny, OEM business development manager at Panasonic, touches on next-generation Megtron materials and delves into the industry's growing demand for high-speed, low-loss laminate systems, particularly in light of the anticipated 224 gigabits per second technology. With a focus on material development and production timelines, Jim highlights the challenges and opportunities in meeting customer needs while also maintaining quality and supply chain stability. As Panasonic prepares for the evolving landscape, they remain committed to innovating in this competitive market.
Intervala Announces Leadership Transition
02/12/2025 | IntervalaIntervala LLC, a premier full-service electronics manufacturing services (EMS) provider, today announced that Teresa Huber, will transition from serving as president and chief executive officer (CEO) into a strategic advisor role for the Company. Robert McKernan has been named president and CEO. Huber and McKernan continue as members of the Company’s board of directors.
American Standard Circuits Names Lance Riley Director of Strategic Programs
02/10/2025 | American Standard CircuitsAnaya Vardya, president and CEO of American Standard Circuits and ASC Sunstone Circuits has announced the appointment of industry veteran Lance Riley to the position of Director of Strategic Programs. In his new role, Riley will focus on working with salespeople and customers supporting their technology needs.
Unimicron Wins 17th Taiwan Corporate Sustainability Award
01/31/2025 | UnimicronUnimicron (3037) has been adhering to a stable management and sustainability concept, promoting corporate sustainability actions, and actively playing a core role in the ESG wave.