Digital Twin Concept in Copper Electroplating Process Performance
July 11, 2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.Estimated reading time: 1 minute

Editor’s Note: This is an excerpt from a technical paper presented at the inaugural Pan European Design Conference in January 2025. It is reflected as originally presented with minor edits for grammar. There is a link to access the full paper at the conclusion of this excerpt.
Abstract
PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.
Copper electroplating is crucial in PCB manufacturing, primarily because it reduces ground line impedance and voltage drop. The performance of the electroplating process directly affects the quality of the copper layer and related mechanical properties. In acid copper plating, achieving proper thickness distribution and surface uniformity without compromising metallurgical properties like elongation and tensile strength is challenging. Lowering the current density can help equalize copper thickness but significantly increases plating time, adversely affecting PCB throughput.
Therefore, controlling process performance and the quality of the electroplated copper layer are vital aspects of PCB plating, which remains challenging even for experienced PCB manufacturers. Recognizing plating process performance in terms of copper layer coverage and thickness up front adds significant value to process design and control. This paper explores the concept of automated copper thieving and the digital twin of the copper plating process in PCB manufacturing. These modern CAE tools facilitate the rapid assessment and mitigation of copper under- and over-plated surface areas, aligning closely with the principles of smart manufacturing.
To read the entire paper, which appeared in the June 2025 issue of PCB007 Magazine, click here.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Statement from the Global Electronics Association on the July 2025 Tariff on Copper Foil and Electronics-Grade Copper Inputs
07/31/2025 | Global Electronics AssociationWe are disappointed by today’s decision to impose a 50% tariff on imported copper foil and other essential materials critical to electronics manufacturing in the United States.
Considering the Future of Impending Copper Tariffs
07/30/2025 | I-Connect007 Editorial TeamThe Global Electronics Association is alerting industry members that a potential 50% tariff on copper could hit U.S. electronics manufacturers where it hurts.
Connect the Dots: Sequential Lamination in HDI PCB Manufacturing
07/31/2025 | Matt Stevenson -- Column: Connect the DotsAs HDI technology becomes mainstream in high-speed and miniaturized electronics, understanding the PCB manufacturing process can help PCB design engineers create successful, cost-effective designs using advanced technologies. Designs that incorporate blind and buried vias, boards with space constraints, sensitive signal integrity requirements, or internal heat dissipation concerns are often candidates for HDI technology and usually require sequential lamination to satisfy the requirements.
OKI Launches Rigid-Flex PCBs with Embedded Copper Coins Featuring Improved Heat Dissipation for Space Equipment Applications
07/29/2025 | BUSINESS WIREOKI Circuit Technology, the OKI Group’s printed circuit board (PCB) business company, has developed rigid-flex PCBs with embedded copper coins that offer improved heat dissipation for use in rockets and satellite-mounted equipment operating in vacuum environments.
Designers Notebook: Basic PCB Planning Criteria—Establishing Design Constraints
07/22/2025 | Vern Solberg -- Column: Designer's NotebookPrinted circuit board development flows more smoothly when all critical issues are predefined and understood from the start. As a basic planning strategy, the designer must first consider the product performance criteria, then determine the specific industry standards or specifications that the product must meet. Planning also includes a review of all significant issues that may affect the product’s manufacture, performance, reliability, overall quality, and safety.