High-frequency EMC Noise in DC Circuits
May 29, 2025 | Karen Burnham, EMC UnitedEstimated reading time: 1 minute
EMC isn’t black magic, but it’s easy to understand why it seems that way. When looking at a schematic like that in Figure 1, it looks like you’re only dealing with DC signals all across the board. There’s a 28 VDC input that goes through an EMI filter, then gets converted to 12 VDC power. Except in extremely rare circumstances involving equipment sensitive to magnetostatic fields, DC electricity will never be part of an EMC problem.
Figure 1: Power conversion stage of avionics unit
Harmonics
The biggest problem occurs when you use a switching operation to convert power from one form to another—something most modern electronics do all the time. For power and thermal efficiency reasons, we want switching waveforms to get as close to a perfect square wave as possible—the faster the rise and fall time, the less loss and heating you have in the operation. The problem is that there’s a trade-off: Faster rise and fall times necessarily generate high-frequency electrical signals. Then, if provisions aren’t made for controlling the high-frequency noise signals, they can escape to cause signal integrity and EMC problems throughout the board and system.
Let’s illustrate this with a simple function generator. The beginning setting is a 5 VDC square wave switching at 20 MHz—something you might see from a board’s clock signal. In Figure 2, we see a cable connected to the function generator channel 1 output. That’s the default cable that came with the function generator, with current being run through a 50 Ω resistor between the red and black leads.
To read the entire article, which originally appeared in the May 2025 issue of Design007 Magazine, click here.
Suggested Items
Cadence AI Autorouter May Transform the Landscape
06/19/2025 | Andy Shaughnessy, Design007 MagazinePatrick Davis, product management director with Cadence Design Systems, discusses advancements in autorouting technology, including AI. He emphasizes a holistic approach that enhances placement and power distribution before routing. He points out that younger engineers seem more likely to embrace autorouting, while the veteran designers are still wary of giving up too much control. Will AI help autorouters finally gain industry-wide acceptance?
Nordic Semiconductor Accelerates Edge AI Leadership with Acquisition of Neuton.AI
06/18/2025 | PRNewswireNordic Semiconductor, the global leader in ultra-low-power wireless connectivity solutions, today announced its acquisition of the intellectual property and core technology assets of Neuton.AI, a pioneer in fully automated TinyML solutions for edge devices.
Keysight, NTT, and NTT Innovative Devices Achieve 280 Gbps World Record Data Rate with Sub-Terahertz for 6G
06/17/2025 | Keysight TechnologiesKeysight Technologies, Inc. in collaboration with NTT Corporation and NTT Innovative Devices Corporation (NTT Innovative Devices), today announced a groundbreaking world record in data rate achieved using sub-THz frequencies.
Nordson Electronics Solutions Develops Panel-level Packaging Solution for Powertech Technology
06/17/2025 | Nordson Electronics SolutionsNordson Electronics Solutions, a global leader in reliable electronics manufacturing technologies, has developed several solutions for panel-level packaging (PLP) during semiconductor manufacturing. In one particular case,
Global PCB Connections: Embedded Components—The Future of High-performance PCB Design
06/19/2025 | Jerome Larez -- Column: Global PCB ConnectionsA promising advancement in this space is the integration of embedded components directly within the PCB substrate. Embedded components—such as resistors, capacitors, and even semiconductors—can be placed within the internal layers of the PCB rather than mounted on the surface. This enables designers to maximize available real estate and improve performance, reliability, and manufacturability.