Toray Engineering Launches TRENG-PLP Coater: Panel Level Coater for Advanced Semiconductor Packaging
December 17, 2024 | ACCESSWIREEstimated reading time: 2 minutes

Toray Engineering Co., Ltd. has developed the TRENG-PLP Coater, a high-accuracy coating device for panel level packaging PLP is an advanced semiconductor packaging technology, for which there is growing demand particularly from AI servers and data centers. Sales of the TRENG-PLP Coater will commence in December 2024.
The Coater enables 2.5D packaging-a next-generation semiconductor production technology-to be applied to larger substrates. Specifically, it is capable of creating detailed rewiring layers on glass substrates for use in interposers, which are a key component of integrated circuits. In this way, the Coater facilitates the production of high-performance semiconductors.
Toray Engineering has already delivered pilot TRENG-PLP Coaters to a number of major semiconductor manufacturers to demonstrate its capabilities. Now, the company is preparing to mass-produce the devices, and is targeting orders totaling 20 million USD by fiscal 2025, and 40 million USD by fiscal 2030.
In recent years, increased demand for generative AI servers has resulted in a proliferation of hyperscale data centers. As semiconductor performance has improved, the market for high-performance semiconductors has expanded rapidly; at the same time, this technological progress has driven demand for larger-scale and more efficient advanced semiconductor packaging, which is indispensable for the production of advanced semiconductor devices.
Interposers are a key component in advanced semiconductor packaging, and are traditionally made of silicon. However, since interposers are square and silicon wafers are round in shape, cutting square interposers out of 300mm-diameter round silicon wafers inevitably results in waste silicon. Moreover, as semiconductor performance increases, package sizes have been increasing year on year, leading to fears of further decreases in production efficiency.
PLP technologies, which use 600mm-square glass substrates, are seen as a potential solution to the above problems. The larger area of the glass substrate means that larger-scale packages can be produced compared to what is possible with silicon wafers, while its square shape means that the entire substrate can be effectively used to create square interposers without resulting in unused substrate.
Yet the use of PLP technologies to create circuits is not without its own issues: warping of the glass substrate must be prevented, while the wiring materials and photoresist materials must be of a uniform thickness.
To prevent warping, Toray Engineering has developed new technologies for the handling of large glass substrates, drawing on proprietary coating technologies for LCD panels, which are capable of controlling thickness with a high degree of precision. These technologies enable the TRENG-PLP Coater to create high-density rewiring layers on 600mm-square glass substrates.
Building on Toray's production technologies for advanced fiber materials, Toray Engineering has developed and refined microfabrication technologies for use in semiconductor packaging equipment, display production equipment, and a wide range of other equipment used in the field of electronics.
Going forward, the company will continue to utilize its high-level production technologies to provide solutions that contribute to society's forward progress.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Advanced Semiconductor Packaging Market Sees Rising Adoption Across Automotive and Industrial Sectors
10/14/2025 | openPRThe semiconductor packaging market size is estimated to reach at a CAGR of 7.2% during the forecast period (2024-2031).
SEMICON West: The Path to a $1 Trillion Future
10/14/2025 | Marcy LaRont, I-Connect007After more than 50 years in San Francisco, SEMICON West moved its 2025 show to Phoenix, which is significant because it highlights the importance of Arizona as a semiconductor and tech hub. Though the show will be back in San Francisco in 2026, the overwhelmingly warm welcome SEMI received from Arizona Governor Katie Hobbs, Phoenix Mayor Kate Gallego, and ASU President Michael Crowe—who has been responsible for ASU repeatedly achieving the U.S. News and World Reports most innovative university ranking—was remarked upon repeatedly. All indications are that SEMICON West may well be back in Phoenix after that 2026 season.
Is Glass Finally Coming of Age?
10/13/2025 | Nolan Johnson, I-Connect007Substrates, by definition, form the base of all electronic devices. Whether discussing silicon wafers for semiconductors, glass-and-epoxy materials in printed circuits, or the base of choice for interposers, all these materials function as substrates. While other substrates have come and gone, silicon and FR-4 have remained the de facto standards for the industry.
Thallner Recognized for Leadership and Innovation in Semiconductor Equipment and MEMS Manufacturing
10/10/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, announced Erich Thallner, President and Co-founder of EV Group (EVG), as its first SEMI Americas Catalyst Award recipient at SEMICON West 2025.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
10/10/2025 | Nolan Johnson, I-Connect007I-Connect007 has a new monthly digest newsletter, the Advanced Electronic Packaging Digest, and as I was scanning our advanced packaging newsfeeds this week, I came across a primer from tokenring.ai (republished through station WRAL, Raleigh, North Carolina), which I found quite useful. Whether you’re a designer, fabricator, or assembler, the package schemes being developed will change how you work, so be sure to keep your eye on the technological horizon and subscribe to the monthly Advanced Electronic Packaging Digest.