When Semiconductors Stick Together, Materials Go Quantum
March 8, 2019 | Lawrence Berkeley National LaboratoryEstimated reading time: 4 minutes
Co-lead authors Chenhao Jin, a postdoctoral scholar, and Emma Regan, a graduate student researcher, both of whom work under Wang in the Ultrafast Nano-Optics Group at UC Berkeley, fabricated the tungsten disulfide and tungsten diselenide samples using a polymer-based technique to pick up and transfer flakes of the materials, each measuring just tens of microns in diameter, into a stack.
They had fabricated similar samples of the materials for a previous study, but with the two layers stacked at no particular angle. When they measured the optical absorption of a new tungsten disulfide and tungsten diselenide sample for the current study, they were taken completely by surprise.
The absorption of visible light in a tungsten disulfide/tungsten diselenide device is largest when the light has the same energy as the system’s exciton, a quasiparticle that consists of an electron bound to a hole that is common in 2D semiconductors. (In physics, a hole is a currently vacant state that an electron could occupy.)
Image Caption: The large potential energy of three distinct exciton states in a 2D tungsten disulfide/tungsten diselenide device could introduce exotic quantum phenomena into semiconducting materials. (Credit: Berkeley Lab)
For light in the energy range that the researchers were considering, they expected to see one peak in the signal that corresponded to the energy of an exciton.
Instead, they found that the original peak that they expected to see had split into three different peaks representing three distinct exciton states.
What could have increased the number of exciton states in the tungsten disulfide/tungsten diselenide device from one to three? Was it the addition of a moiré superlattice?
To find out, their collaborators Aiming Yan and Alex Zettl used a transmission electron microscope (TEM) at Berkeley Lab’s Molecular Foundry, a nanoscale science research facility, to take atomic-resolution images of the tungsten disulfide/tungsten diselenide device to check how the materials’ lattices were aligned.
The TEM images confirmed what they had suspected all along: the materials had indeed formed a moiré superlattice. “We saw beautiful, repeating patterns over the entire sample,” said Regan. “After comparing this experimental observation with a theoretical model, we found that the moiré pattern introduces a large potential energy periodically over the device and could therefore introduce exotic quantum phenomena.”
The researchers next plan to measure how this new quantum system could be applied to optoelectronics, which relates to the use of light in electronics; valleytronics, a field that could extend the limits of Moore’s law by miniaturizing electronic components; and superconductivity, which would allow electrons to flow in devices with virtually no resistance.
Also contributing to the study were researchers from Arizona State University and the National Institute for Materials Science in Japan.
The work was supported by the DOE Office of Science. Additional funding was provided by the National Science Foundation, the Department of Defense, and the Elemental Strategy Initiative conducted by MEXT, Japan, and JSPS KAKENHI. The Molecular Foundry is a DOE Office of Science user facility.
Page 2 of 2Suggested Items
DuPont Announces Additional Directors for the Planned Independent Electronics Company
04/18/2025 | DuPontDuPont announced that Karin De Bondt and Anne Noonan will become members of the future board of directors for the independent Electronics public company that will be created following its intended spin-off from DuPont, which is targeted for November 1, 2025.
Indium Experts to Present on Power Electronics at PCIM Europe 2025
04/17/2025 | Indium CorporationAs one of the leading materials providers to the power electronics assembly and e-Mobility industries, Indium Corporation experts will share their technical insight and knowledge on a variety of industry-related topics throughout PCIM Europe, May 6-8, in Nuremberg, Germany.
YINCAE to Showcase Cutting-Edge Solutions at SEMICON Southeast Asia 2025
04/16/2025 | YINCAEYINCAE Advanced Materials, a leading provider of innovative solutions for the semiconductor and microelectronics industries, is proud to announce its participation in SEMICON Southeast Asia 2025.
Improve Your Process Reliability: Axxon-Mycronic and HumiSeal to Host Conformal Coating Workshop in Guadalajara
04/15/2025 | Axxon-MycronicAxxon-Mycronic, a leading, global supplier of innovative and production-ready, dispensing and conformal coating systems, in collaboration with HumiSeal, a global expert in protective coating materials, is excited to announce a Conformal Coating Workshop taking place on May 8, 2025 in Guadalajara, Mexico.
Real Time with... IPC APEX EXPO 2025: Exploring LCP Materials with Matrix Electronics
04/15/2025 | Real Time with...IPC APEX EXPONolan Johnson introduces Robert Berg from Matrix Electronics, highlighting the company's focus on high-speed, low-loss flexible materials, especially LCP materials. LCP (liquid crystal polymer) is a thermal plastic with unique properties that make it ideal for advanced PCB applications. Despite processing challenges, its stability and FDA approval for medical use drive interest in aerospace and medical markets.