-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueMoving Forward With Confidence
In this issue, we focus on sales and quoting, workforce training, new IPC leadership in the U.S. and Canada, the effects of tariffs, CFX standards, and much more—all designed to provide perspective as you move through the cloud bank of today's shifting economic market.
Intelligent Test and Inspection
Are you ready to explore the cutting-edge advancements shaping the electronics manufacturing industry? The May 2025 issue of SMT007 Magazine is packed with insights, innovations, and expert perspectives that you won’t want to miss.
Do You Have X-ray Vision?
Has X-ray’s time finally come in electronics manufacturing? Join us in this issue of SMT007 Magazine, where we answer this question and others to bring more efficiency to your bottom line.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Hon Hai Research Institute Demonstrates Superiority of Shallow Quantum Circuits Beyond Prior Understanding
May 5, 2025 | Hon Hai Technology GroupEstimated reading time: 1 minute
Hon Hai Research Institute (HHRI), in a milestone collaborative effort, has demonstrated that parallel quantum computation can exhibit greater computational power than previously recognized, with its research results accepted for publication in the prestigious journal Nature Communications.
Titled "Unconditional advantage of noisy qudit quantum circuits over biased threshold circuits in constant depth," the latest HHRI paper achieves another milestone in quantum computing research.
While many current claims of “quantum advantage” are based on certain unproven assumptions and remain experimentally challenging to verify, this study presents an unconditional proof of quantum circuit supremacy without any computational hardness assumptions. Notably, the team proved that even when quantum circuits are subject to noise, shallow qudit quantum circuits built from local logic gates can solve problems that classical polynomial-sized biased threshold circuits fundamentally cannot. The finding highlights the long-term potential and practical application of quantum computing.
This breakthrough solidifies Taiwan’s growing influence in the field of quantum computing and showcases the deep commitment and accumulated expertise in this critical area of research by Hon Hai Research Institute, a key R&D source for Hon Hai Technology Group (Foxconn), the world’s largest electronics manufacturing service provider. HHRI will continue to push forward in quantum technology to contribute to global innovation and industrial advancement.
The research was a collaborative effort led by Dr. Ming-Hsiu Hsieh, Director of HHRI’s Quantum Computing Research Center, along with institute Researcher Leandro Mendes and PhD intern Michael de Oliveira. Collaborating with HHRI was Sathyawageeswar Subramanian, a senior research fellow from the Department of Computer Science and Technology at the University of Cambridge in the United Kingdom.
Figure 1: Classes of circuits and the corresponding problems that could be efficiently solved by them. This breakthrough study establishes a fundamental advancement in our understanding of quantum circuit capabilities. The research demonstrates that a class of problems, known as ISMRP, can be efficiently computed by shallow quantum circuits—but not by any polynomial-sized classical biased threshold circuits (bPTC0(k)). This proves a previously unverified advantage of shallow quantum circuits.
Suggested Items
Leidos Using Quantum Technology to Thwart GPS Jamming
06/05/2025 | PRNewswireSusceptibility to jamming is a significant military vulnerability of the Global Positioning System (GPS) signal. Through a Defense Innovation Unit contract, Leidos is developing an alternative navigation technology that measures variations in the Earth's magnetic field and harnesses the quantum properties of nitrogen in diamonds.
IonQ Signs MoU with KISTI to Accelerate South Korea’s Role in the Global Quantum Race
06/02/2025 | IonQIonQ, a leading commercial quantum computing and networking company, today announced the signing of a memorandum of understanding (MoU) with the Korea Institute of Science and Technology Information (KISTI), a leading national science and technology research institute and supercomputing center.
Quantinuum, Al Rabban Capital Launch Joint Venture to Accelerate Quantum Computing Adoption in Qatar and the Region
05/21/2025 | QuantinuumQuantinuum, the world leader in quantum computing, is establishing a Qatari-incorporated Joint Venture with Al Rabban Capital, a division of Al Rabban Holding Company, one of Qatar’s most prominent companies.
Keysight Quantum Control System Embedded within Fujitsu and RIKEN’s World-Leading 256-Qubit Quantum Computer
05/16/2025 | BUSINESS WIREKeysight Technologies, Inc. announced that its Quantum Control System (QCS) has been selected as the control system embedded within Fujitsu and RIKEN’s recently developed 256-qubit quantum computer at the RIKEN RQC-FUJITSU Collaboration Center in Japan, marking a pioneering step in the industry’s pursuit of fault tolerant quantum computer.
DARPA, State of Maryland Sign Agreement to Propel Quantum Research
05/05/2025 | DARPADARPA and the State of Maryland have established a cooperative effort, the Capital Quantum Benchmarking Hub, to test and evaluate quantum computing prototypes and systems for national security and commercial applications.