-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueTechnical Resources
Key industry organizations–all with knowledge sharing as a part of their mission–share their technical repositories in this issue of SMT007 Magazine. Where can you find information critical to your work? Odds are, right here.
The Path Ahead
What are you paying the most attention to as we enter 2025? Find out what we learned when we asked that question. Join us as we explore five main themes in the new year.
Soldering Technologies
Soldering is the heartbeat of assembly, and new developments are taking place to match the rest of the innovation in electronics. There are tried-and-true technologies for soldering. But new challenges in packaging, materials, and sustainability may be putting this key step in flux.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
Incheon National University Study Pioneers Breakthrough in Wireless Charging Technology
February 21, 2025 | PRNewswireEstimated reading time: 2 minutes
The efficiency of wireless charging systems is limited by power loss occurring due to frequency changes in the resonant circuits that enable power transfer. These necessary modulations reduce electromagnetic interference caused by resonant frequencies on other devices. However, conventional strategies for adapting to changing frequencies are inefficient, cost-prohibitive, and impractical. Now, scientists have designed a resonant tuning rectifier that provides a low-cost, efficient solution to stabilize power delivery in wireless power systems.
Wireless power transfer (WPT) enables device charging without direct physical or wired connections. Resonant circuits are key components of WPT systems that optimize energy transfer from the transmitter to the receiver. In parallel compensated receivers, capacitors balance the inductance of the receiver coil to achieve resonance, reducing circuit impedance, thereby enhancing power transfer.
The electromagnetic fields generated by such receivers can interfere with other electronic devices. Controlling this interference requires modulating the system's operating frequency. However, this modulation creates a mismatch between the modulated and resonant frequencies, severely degrading power output and system efficiency. Current strategies to correct this mismatch rely on additional hardware or complex circuitry, leading to energy loss, complex control settings, and bulkier designs.
In an attempt to find an innovative solution to overcome these challenges, a group of scientists led by Professor Dukju Ahn at Incheon National University, Korea, proposed a resonant tuning rectifier (RTR) for parallel resonant receiver systems. The novel RTR features a minimalist design that synchronizes its operation with the natural rhythm of the system's primary current. "Our RTR does not require extra power components or complex feedback circuitry, rendering it more practical for real-world use," says Prof. Ahn. The study was made available online on May 14, 2024 and was published in Volume 71, Issue 12 of IEEE Transactions on Industrial Electronics on December 01, 2024.
The RTR automatically adjusts effective capacitance to tune the resonant frequency by syncing control signals with the system's current, compensating for differences between intrinsic resonance and modulation periods. Unlike existing methods, it uses a simple sensor coil to extract phase information without impacting performance, eliminating the need for transmitter-receiver communication.
Testing a 2.2 kW prototype for automobile charging showed that the RTR compensates for frequency modulation (80—90 kHz) in 70 ms, maintaining stable power output during misalignment and improving efficiency from 3.5% to 8.1%. Its zero-voltage system optimizes control settings to reduce power loss, offering a simple, cost-effective solution for real-time adaptation and stable power delivery.
"The automatic adjustment of resonant frequency impacts not only wireless charging but also induction heating, plasma generation, and power conversion," explains Prof. Ahn. "With minimal energy loss, high efficiency, stable throughput, a minimalist design, and low system impact, RTR can significantly enhance wireless power system performance," he concludes. As wireless charging becomes more widespread, the proposed RTR offers a promising solution to mitigate existing challenges, making this technology more accessible to everyday users.
Suggested Items
Smarter Inspection, Greater Savings – Mek Brings AOI & ROI Insights to IPC APEX 2025
02/21/2025 | Mek (Marantz Electronics)Mek (Marantz Electronics), a global leader in Automated Optical Inspection (AOI) and Solder Paste Inspection (SPI) systems, is excited to announce its participation in IPC APEX EXPO 2025, the largest electronics manufacturing event in North America.
Altair Releases Altair HyperWorks 2025
02/19/2025 | AltairAltair, a global leader in computational intelligence, is thrilled to announce the release of Altair® HyperWorks® 2025, a best-in-class design and simulation platform for solving the world's most complex engineering challenges.
Kyocera Develops AI-powered 5G Virtualized Base Station for the Telecommunication Infrastructure Market
02/18/2025 | BUSINESS WIREKyocera Corporation announced that it has officially begun the full-scale development of an AI-powered 5G virtualized base station, with plans to commercialize the technology.
Cambridge GaN Devices Secures $32M to Drive Global Growth in Power Semiconductor Industry
02/18/2025 | BUSINESS WIRECambridge GaN Devices (CGD), a leading innovator in gallium nitride (GaN) power devices, has successfully closed a $32 million Series C funding round. The investment was led by a strategic investor with participation from British Patient Capital and supported by existing investors Parkwalk, BGF, Cambridge Innovation Capital (CIC), Foresight Group, and IQ Capital.
Managing Energy Flow with Proper Stackup Design
02/13/2025 | Andy Shaughnessy, Design007At Design Con 2025, I had the opportunity to speak with Dan Beeker, technical director at NXP Semiconductor, about his technical session, which focused on optimizing PCB layers to best direct signal and power supply energy between these layers. In this interview, Dan discusses the complexities of board stackup and the significance of understanding dielectric layers for effective signal transmission. Dan is something of a “fields evangelist,” spreading the word about the need for designers to focus on fields, not just circuit theory. Toward the end, Dan summed up much of the design segment: Designing something that didn't make it break is not the same thing as designing it correctly.